Publications: 2013-2017

  1. “AB3-loaded and tumor-targeted unimolecular micelles for medullary thyroid cancer treatment.” Jaskula-Sztul, R.; Chen, G.; Dammalapati, A.; Harrison, A.; Tang, W.; Gong, S.;* and Chen, H.* J. Mater. Chem. 20175151-159. Link.
  2. “Addressing the Challenge of Carbohydrate Site Selectivity by Synergistic Catalysis.”
    Blaszczyk, S. A. and Tang W.* Chem 20173, 722–723. Link.
    Graphical abstract image for "Addressing the Challenge of Carbohydrate Site Selectivity by Synergistic Catalysis"
  3. “Isoquinoline-1-carboxylate as a Traceless Leaving Group for Chelation-Assisted Glycosylation under Mild Neutral Conditions.” Wang, H.-Y.; Simmons, C. J.; Blaszczyk, S. A.; Balzer, P. G.; Luo, R.; Duan, X.; and Tang W.* Angew. Chem. Int. Ed. 201756, 15698–15702 . LinkSoP News.
    Graphical abstract image for "Isoquinoline-1-carboxylate as a Traceless Leaving Group for Chelation-Assisted Glycosylation under Mild Neutral Conditions"
  4. “Harnessing the Reactivity of Iridium Hydrides by Air: Iridium- Catalyzed Oxidation of Aldehydes to Acids in Water.” Yang, Z.; Luo, R.; Zhu, Z.; Yang, X.; and Tang W.* Organometallics201736, 4095–4098. Link.
  5. “Transition metal mediated carbonylative benzannulations.” Song, W.; Blaszczyk, S. A.; Liu, J.; Wang, S.;* and Tang W.* Org. Biomol. Chem. 201715, 7490-7504. Link. 
    Graphical abstract image for "Transition metal mediated carbonylative benzannulations."
  6. “Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source.” Yang, Z.; Zhu, Z.; Luo, R.; Qiu, X.; Liu, J.-L.; Yang, J.-K.; and Tang W.* Green Chem. 201719, 3296-3301. Link.
    Graphical abstract image for "Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source"
  7. De novo Synthesis of Mono- and Oligosaccharides via Dihydropyran Intermediates.”
    Song, W.; Wang, S.* and Tang, W.* Chem. Asian J. 201712, 1027-1042. Link.
    Graphical abstract image for "e novo Synthesis of Mono- and Oligosaccharides via Dihydropyran Intermediates"
  8. “Catalytic Site-Selective Acylation of Carbohydrates Directed by Cation–n Interaction.”
    Xiao, G.; Cintron-Rosado, G. A.; Glazier, D. A.; Xi, B.-m.; Liu, C.; Liu, P.* and Tang, W.* J. Am. Chem. Soc. 2017139, 4346-4349. Link. SoP News.
    Graphical abstract image for "Catalytic Site-Selective Acylation of Carbohydrates Directed by Cation–n Interaction"
  9. “Neuroendocrine Tumor-Targeted Upconversion Nanoparticle-Based Micelles for Simultaneous NIR-Controlled Combination Chemotherapy and Photodynamic Therapy, and Fluorescence Imaging.”  Chen, G.; Jaskula-Sztul, R.; Esquibel, C. R.; Lou, I.; Zheng, Q.; Dammalapati, A.; Harrison, A.; Eliceiri, K. W.; Tang, W.; Chen, H.;* Gong, S.* Adv. Funct. Mater. 201727, 1604671. Link.
  10. “Chiral Catalyst-Directed Dynamic Kinetic Diastereoselective Acylation of Anomeric Hydroxyl Groups and a Controlled Reduction of the Glycosyl Ester Products.”
    Wang, H.-Y.; Simmons, C. J.; Zhang, Y.; Smits, A. M.; Balzer, P. G.; Wang, S.;* and Tang, W.* Org. Lett. 201719, 508-511. Link.
  11. “Synthesis of Highly Substituted Benzofuran-containing Natural Products via Rh-catalyzed Carbonylative Benzannulation.” Liu, J.-t.; Simmons, C. J.; Xie, H.; Yang, F.; Zhao, X-l.;* Tang, Y.;* and Tang, W.* Adv. Syn. Catal. 2017359, 693-697link. Highlight in Synfacts, 2017, 13(05): 0478 (DOI: 10.1055/s-0036-1590363).
    Graphical abstract image for "Synthesis of Highly Substituted Benzofuran-containing Natural Products via Rh-catalyzed Carbonylative Benzannulation"
  12. “Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma.”  Hideshima, T.; Qi, J.; Paranal, R. M.; Tang, W.; Greenberg, E.; West, N.; Colling, M. E.; Estiu, G.; Mazitschek, R.; Perry, J. A.; Ohguchi, H.; Cottini, F.; Mimura, N.; Görgün, G.; Tai, Y.-T.; Richardson, P. G.; Carrasco, R. D.; Wiest, O.; Schreiber, S. L.; Anderson, K. C.;* Bradner, J. E.* Proc. Natl. Acad. Sci. U.S.A. 2016113, 13162-13167. Link.
  13. “Author Profile ” Tang, W. Angew. Chem. Int. Ed. 201655, 12142. Link.
  14. “Total Synthesis of Diptoindonesin G and Its Analogues as Selective Modulators of Estrogen Receptors.” Liu, J.-t.; Do, T. J.; Simmons, C. J.; Lynch, J. C.; Gu, W.; Ma, Z.-X.; Xu, W.; and Tang, W.* Org. Biomol. Chem. 201614, 8927-8930. Link.Thumbnail for publication 63: Graphical abstract: Total synthesis of diptoindonesin G and its analogues as selective modulators of estrogen receptors
  15. “Rhodium(I)-Catalyzed Benzannulation of Heteroaryl Propargylic Esters: Synthesis of Indoles and Related Heterocycles.”  Li, X.; Xie, H.; Fu, X.; Liu, J.-t.; Wang, H.-y.; Xi, B.-m.;* Liu, P.;* Xu, X.;* and Tang, W.* Chem. Eur. J. 201622, 10410-10414. Link.
    Graphical abstract image for "Rhodium(I)-Catalyzed Benzannulation of Heteroaryl Propargylic Esters: Synthesis of Indoles and Related Heterocycles"
  16. “Rhodium-catalyzed [5+2] Cycloaddition of 3-Acyloxy-1,4-enyne and Alkene or Allene.”
    Song, W.; Lynch, J. C.; Shu, X.-z.; and Tang, W.* Adv. Syn. Catal. 2016358, 2007-2011. Link.
    Graphical abstract image for "Rhodium-catalyzed [5+2] Cycloaddition of 3-Acyloxy-1,4-enyne and Alkene or Allene"
  17. “Rhodium-Catalyzed [5+2] Cycloaddition of Inverted 3-Acyloxy-1,4-enyne and Alkyne: Experimental and Theoretical Studies.”  Li, X.; Song, W.; Zhao, X.-l.; Ke, X.; Xu, X.;* Liu, P.; Houk, K. N. and Tang, W.* Chem. Eur. J. 2016, 22, 7079-7083. Link.
    Graphical abstract image for Tang study "Rhodium-Catalyzed [5+2] Cycloaddition of Inverted 3-Acyloxy-1,4-enyne and Alkyne: Experimental and Theoretical Studies"
  18. “Synthesis of Carbazoles and Carbazole-Containing Heterocycles via Rhodium-Catalyzed Tandem Carbonylative Benzannulations.”  Song, W.; Li, X.; Yang, K.; Zhao, X.-l.; Glazier, D. A.; Xi, B.-m.;* Tang, W.* J. Org. Chem. 2016, 81, 2930–2942. Link.
    Graphical abstract for Tang article "Synthesis of Carbazoles and Carbazole-Containing Heterocycles via Rhodium-Catalyzed Tandem Carbonylative Benzannulations"
  19. “Mechanism and reactivity of rhodium-catalyzed intermolecular [5+1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO: A computational study.”  Ke, X.-N.; Schienebeck, C. M.; Zhou, C.-C.; Xu, X.-F.;* Tang, W.* Chin. Chem. Lett. 2015, 26, 730-734. Link.
  20. “Chiral Catalyst-Directed Dynamic Kinetic Diastereoselective Acylation of Lactols for De Novo Synthesis of Carbohydrate.”  Wang, H.-Y.; Yang, K.; Yin, D.; Liu, C.; Glazier, D. A.; Tang, W.* Org. Lett. 2015, 17, 5272-5275. Link.
    Graphical abstract image for Tang article "Chiral Catalyst-Directed Dynamic Kinetic Diastereoselective Acylation of Lactols for De Novo Synthesis of Carbohydrate"
  21. “Divergent De Novo Synthesis of All Eight Stereoisomers of 2,3,6-Trideoxyhexopyranosides and Their Oligomers.”  Song, W.; Zhao, Y.;* Lynch, J. C.; Kim, H.; Tang, W.* Chem Commun. 2015, 51, 17475-17478. Link.
    Graphical abstract image for Tang article "Divergent de novo synthesis of all eight stereoisomers of 2,3,6-trideoxyhexopyranosides and their oligomers"
  22. “Rhodium-Catalyzed Stereoselective Intramolecular [5 + 2] Cycloaddition of 3-Acyloxy 1,4-Enyne and Alkene.”
    Shu, X.-Z.; Schienebeck, C. M.; Li, X.; Zhou, X.; Song, W.; Chen, L.; Guzei, I. A.; Tang, W.* Org. Lett. 2015, 17, 5128-5131. Link.
  23. “Divergent Reactivity of Rhodium(I) Carbenes Derived from Indole Annulations.”
    Li, X.; Li, H.; Song, W.; Tseng, P.-S.; Liu, L.-Y.*; Guzei, I. A.; Tang, W.* Angew. Chem. Int. Ed. 2015, 54, 12905-12908. Link.
    Graphical abstract image for Tang article "Divergent Reactivity of Rhodium(I) Carbenes Derived from Indole Annulations"
  24. “Iridium-Catalyzed Dynamic Kinetic Isomerization: Expedient Synthesis of Carbohydrates from Achmatowicz Rearrangement Products.”  Wang, H.-Y.; Yang, K.; Bennett S. R.; Guo, S.-R.;* Tang, W.* Angew. Chem. Int. Ed. 2015, 54, 8756–8759. Link.
    Graphical abstract image for Tang article "Iridium-Catalyzed Dynamic Kinetic Isomerization: Expedient Synthesis of Carbohydrates from Achmatowicz Rearrangement Products"
  25. “Novel Analogs Targeting Histone Deacetylase Suppress Aggressive Thyroid Cancer Cell Growth and Induce Re-differentiation.”  Jang, S.; Yu, X. M.; Odorico, S.; Clark, M.; Jaskula-Sztul, R.; Schienebeck, C. M.; Kupcho, K. R.; Harrison, A. D.; Winston-McPherson, G. N.; Tang, W.; Chen, H.* Cancer Gene Ther. 2015, 22, 410. Link.
  26. “Synthesis of Substituted Tropones by Sequential Rh-Catalyzed [5+2] Cycloaddition and Elimination.”  Song, W.; Xi, B.-m.;* Yang, K.; Tang, W.* Tetrahedron 2015, 71, 5979-5984. (Invited contribution for Prof. Barry Trost’s Tetrahedron Award.). Link.
    Graphical abstract image for Tang article "Synthesis of Substituted Tropones by Sequential Rh-Catalyzed [5+2] Cycloaddition and Elimination"
  27. “Rhodium-Catalyzed Intermolecular [5+1] and [5+2] Cycloadditions Using 1,4-Enynes with an Electron-Donating Ester on the 3-Position.”  Schienebeck, C. M.; Song, W.; Smits, A. M.; Tang, W.* Synthesis 2015, 47, 1076-1084. (invited feature article). Link.
  28. “Tumor Suppressor Role of Notch3 in Medullary Thyroid Carcinoma Revealed by Genetic and Pharmacological Induction.”  Jaskula-Sztul, R.; Eide, J.; Tesfazghi, S.; Dammalapati, A.; Harrison, A. D.; Yu, X.-M.; Scheinebeck, C.; Winston-McPherson, G.; Kupcho, K. R.; Robers, M. B.; Hundal, A. K.; Tang, W.;* Chen, H.* Mol. Cancer Therap. 2015, 14, 499. Link.
  29. “Gold versus Rhodium: Divergent Reactivity Enabled by the Catalyst.” Winston-McPherson, G. N.; Tang, W.* ChemCatChem 2015, 7, 574-576. Link.
    Graphical abstract image for Tang paper "Gold versus Rhodium: Divergent Reactivity Enabled by the Catalyst"
  30. “Copper-catalyzed tandem annulation/arylation for the synthesis of diindolylmethanes from propargylic alcohols.”  Li, H.; Li, X.; Wang, H.-Y.; Winston-McPherson, G. N.; Geng, H.-M. J.; Guzei, I. A.; Tang, W.* Chem. Commun. 2014, 50, 12293-12296. Link.
    Graphical abstract for Tang article "Copper-catalyzed tandem annulation/arylation for the synthesis of diindolylmethanes from propargylic alcohols"
  31. “Synthesis of naturally occurring tropones and tropolones.”  Liu, N.; Song, W.; Schienebeck, C. M.; Zhang, M.* Tang, W.* Tetrahedron. 2014, 70, 9281-9305. (Invited review) Link.
    Graphical abstract image of Tropone and Trpolones (for Tang article "Synthesis of naturally occurring tropones and tropolones)
  32. “Synthesis and Biological Evaluation of 2,3’-Diindolylmethanes as Agonists of Aryl Hydrocarbon Receptor.”  Winston-McPherson, G. N.; Shu, D.; Tang, W.* Bioorg. Med. Chem. Lett. 2014, 24, 4023-4025. Link.
    Graphical abstract for Tang pub "Synthesis and Biological Evaluation of 2,3’-Diindolylmethanes as Agonists of Aryl Hydrocarbon Receptor"
  33. “Cinchona Alkaloids as Organocatalysts in Enantioselective Halofunctionalization of Alkenes and Alkynes.”  Zheng, S.; Schienebeck, C. M.; Zhang, W.; Wang, H.-Y.; Tang, W.* Asian J. Org. Chem. 2014, 3, 366-376. (Invited review) Link.
    Graphical abstract for Tang article "Cinchona Alkaloids as Organocatalysts in Enantioselective Halofunctionalization of Alkenes and Alkynes"
  34. “Intermolecular bromoesterification of conjugated enynes: an efficient synthesis of bromoallenes.”  Wang, H.-Y.; Zhang, W.; Schienebeck, C. M.; Bennett, S. R.; Tang, W.* Org. Chem. Front. 2014, 1, 386-390. (Invited contribution) Link.
    Graphical abstract for Tang pub "Intermolecular bromoesterification of conjugated enynes: an efficient synthesis of bromoallenes"
  35. “3-Acyloxy-1,4-enyne: a New Five-Carbon Synthon for Rhodium-Catalyzed [5 + 2] Cycloadditions.”  Schienebeck, C. M.; Li, X.; Shu, X.-Z.; Tang, W.* Pure Appl. Chem. 2014, 86, 409-417. (Invited review) Link.
  36. “Tethered Spectroscopic Probes Estimate Dynamic Distances with Subnanometer Resolution in Voltage-Dependent Potassium Channels.”  Jarecki, B. W.; Zheng, S.; Zhang, L.; Li, X.; Zhou, X.; Cui, Q.; Tang, W.; Chanda, B.* Biophysical J. 2013, 105, 2724-2732. Link.  Highlight in Nature Chemical Biology Link.
  37. “Rhodium-Catalyzed Tandem Annulation and (5+1) Cycloaddition: 3-Hydroxy-1,4-enyne as the 5-Carbon Component.”  Li, X.; Song, W.; Tang, W.* J. Am. Chem. Soc. 2013, 135, 16797-16800. Link.
    Graphical abstract for Tang pub "Rhodium-Catalyzed Tandem Annulation and (5+1) Cycloaddition: 3-Hydroxy-1,4-enyne as the 5-Carbon Component"
  38. “Transfer of Chirality in the Rhodium-Catalyzed Intramolecular [5+2] Cycloaddition of 3-Acyloxy-1,4-Enynes (ACEs) and Alkynes: Synthesis of Enantioenriched Bicyclo[5.3.0]decatrienes.”  Shu, X.-Z.; Schienebeck, C. M.; Song, W.; Guzei, I. A.; Tang, W.* Angew. Chem. Int. Ed. 2013, 52, 13601-13605. Link.
    Highlight in Synfacts, 2014, volume 10, issue 3, 0295 (doi:10.1055/s-0033-1340687)
    Graphical abstract for Tang article "Transfer of Chirality in the Rhodium-Catalyzed Intramolecular [5+2] Cycloaddition of 3-Acyloxy-1,4-Enynes (ACEs) and Alkynes: Synthesis of Enantioenriched Bicyclo[5.3.0]decatrienes"
  39. “Stereoselective Halocyclization of Alkenes with N-Acyl Hemiaminal Nucleophiles.”
    Liu, N.; Wang, H.-Y.; Zhang, W.; Jia, Z.-H.; Guzei, I. A.; Xu, H.-D.;* Tang, W.* Chirality 2013, 25, 805-809. Link.  (Invited contribution.)
  40. “Stereoselective Total Synthesis of Hainanolidol and Harringtonolide via Oxidopyrylium-Based [5+2] Cycloaddition.”  Zhang, M.; Liu, N.; Tang, W.* J. Am. Chem. Soc. 2013, 135, 12434-12438. Link.
    Graphical abstract image for Tang pub "Stereoselective Total Synthesis of Hainanolidol and Harringtonolide via Oxidopyrylium-Based [5+2] Cycloaddition"
  41. “Platinum-Catalyzed Tandem Indole Annulation/Arylation for the Synthesis of Diindolylmethanes and Indolo[3,2-b]carbazoles.”  Shu, D.; Winston-McPherson, G. N.; Song, W.; Tang, W.* Org. Lett. 2013, 15, 4162-4165. Link.
    Graphical abstract image for Tang pub "Platinum-Catalyzed Tandem Indole Annulation/Arylation for the Synthesis of Diindolylmethanes and Indolo[3,2-b]carbazoles"
  42. “Rh-Catalyzed (5+2) Cycloadditions of 3-Acyloxy-1,4-enynes and Alkynes: Computational Study of Mechanism, Reactivity, and Regioselectivity.”  Xu, X.;* Liu, P.; Shu, X.-Z.; Tang, W.*; Houk, K. N.* J. Am. Chem. Soc. 2013, 135, 9271-9274. Link.
    Graphical abstract for Tang publication "Rh-Catalyzed (5+2) Cycloadditions of 3-Acyloxy-1,4-enynes and Alkynes: Computational Study of Mechanism, Reactivity, and Regioselectivity"
  43. “Generation of Rhodium(I) Carbenes from Ynamides and Their Reactions with Alkynes and Alkenes.”  Liu, R.; Winston-McPherson, G. N.; Yang, Z.-Y.; Zhou, X.; Song, W.; Guzei, I. A.; Xu, X.;* Tang, W.* J. Am. Chem. Soc. 2013, 135, 8201–8204. Link.
    Graphical abstract for Tang pub "Generation of Rhodium(I) Carbenes from Ynamides and Their Reactions with Alkynes and Alkenes"
  44. “Stereoselective Addition of Halogen to Conjugated Enynes and Its Application in the Total Synthesis of (-)-Kumausallene.”  Werness, J. B.; Zhang, W.; Tang, W.* in Strategies and Tactics in Organic Synthesis Ed., Harmata, M., Elsevier Science, Pergamon Press: Oxford, UK 2013, Vol. 9, Chapter 10, pp 275-291.
  45. “Enantioselective intermolecular bromoesterification of allylic sulfonamides.”
    Zhang, W.; Liu, N.; Schienebeck, C. M.; Zhou, X.; Izhar, I. I.; Guzei, I. A.; Tang, W.* Chem. Sci. 2013, 4, 2652-2656. Link.
    Graphical abstract for Tang pub "Ring Expansion of Alkynyl Cyclopropanes to Highly Substituted Cyclobutenes via a N-Sulfonyl-1,2,3-Triazole Intermediate"
  46. “Ring Expansion of Alkynyl Cyclopropanes to Highly Substituted Cyclobutenes via a N-Sulfonyl-1,2,3-Triazole Intermediate.”  Liu, R.; Zhang, M.; Winston-McPherson, G.; Tang, W.* Chem. Commun. 2013, 49, 4376-4378. Link.
    (This article is part of the ChemComm ‘Emerging Investigators 2013’ themed issue.)
    Graphical abstract for Tang article "Ring Expansion of Alkynyl Cyclopropanes to Highly Substituted Cyclobutenes via a N-Sulfonyl-1,2,3-Triazole Intermediate"
  47. “Effect of Ester on Rhodium-Catalyzed Intermolecular [5 + 2] Cycloaddition of 3-Acyloxy-1,4-enynes and Alkynes.”  Schienebeck, C. M.; Robichaux, P. J.; Li, X.; Chen, L.; Tang, W.* Chem. Commun. 2013, 49, 2616-2618. Link.
    Graphical abstract image for Tang article "Rhodium- and Platinum-catalyzed [4+3] Cycloaddition with Concomitant Indole Annulation: Synthesis of Cyclohepta[b]indoles"
  48. “Rhodium- and Platinum-catalyzed [4+3] Cycloaddition with Concomitant Indole Annulation: Synthesis of Cyclohepta[b]indoles.”  Shu, D.; Song, W.; Li, X.; Tang, W.* Angew. Chem. Int. Ed. 2013, 52, 3237-3240. Link.
    Graphical abstract image: Cross-dimerization of terminal arylacetylenes and terminal propargylic alcohols/amides has been achieved in the presence of a rhodium catalyst. This method features high chemo- and regioselectivities rendering convenient and atom economical access to functionalized enynes.
  49. “Rhodium-Catalyzed Chemo- and Regioselective Cross-Dimerization of Two Terminal Alkynes.”  Xu, H.-D.*; Zhang, R.-W.; Li, X., Huang, S., Tang, W.; Hu, W.-H. Org. Lett. 2013, 15, 840-843. Link.
    Graphical abstract image for Tang pub "Rhodium-Catalyzed Chemo- and Regioselective Cross-Dimerization of Two Terminal Alkynes"