Summary
Dendrimer-based anticancer nanotherapeutics containing ∼5 folate molecules have shown in vitro and in vivo efficacy in cancer cell targeting. Multivalent interactions have been inferred from observed targeting efficacy, but have not been experimentally proven. This study provides quantitative and systematic evidence for multivalent interactions between these nanodevices and folate-binding protein (FBP). A series of the nanodevices were synthesized by conjugation with different amounts of folate. Dissociation constants (KD) between the nanodevices and FBP measured by SPR are dramatically enhanced through multivalency (∼2,500- to 170,000-fold). Qualitative evidence is also provided for a multivalent targeting effect to KB cells using flow cytometry. These data support the hypothesis that multivalent enhancement of KD, not an enhanced rate of endocytosis, is the key factor resulting in the improved biological targeting by these drug delivery platforms.
Cited by
This article is cited by 180 publications
-
Kohon, A. I., Man, K., Mathis, K., Webb, J., Yang, Y., & Meckes, B. (2023). Nanoparticle targeting of mechanically modulated glycocalyx. bioRxiv : the preprint server for biology, 2023.02.27.529887. https://doi.org/10.1101/2023.02.27.529887
-
Zhang, S., Ouyang, T., & Reinhard, B. M. (2022). Multivalent Ligand-Nanoparticle Conjugates Amplify Reactive Oxygen Species Second Messenger Generation and Enhance Epidermal Growth Factor Receptor Phosphorylation. Bioconjugate chemistry, 33(9), 1716–1728. https://doi.org/10.1021/acs.bioconjchem.2c00335
-
Yang, T., Zhai, J., Hu, D., Yang, R., Wang, G., Li, Y., & Liang, G. (2022). “Targeting Design” of Nanoparticles in Tumor Therapy. Pharmaceutics, 14(9), 1919. https://doi.org/10.3390/pharmaceutics14091919
-
Perli, G., Bertuzzi, D. L., Souto, D., Ramos, M. D., Braga, C. B., Aguiar, S. B., & Ornelas, C. (2022). Synthesis and Characterization of Dendronized Gold Nanoparticles Bearing Charged Peripheral Groups with Antimicrobial Potential. Nanomaterials (Basel, Switzerland), 12(15), 2610. https://doi.org/10.3390/nano12152610
-
Sun, Y., Yan, L., Sun, J., Xiao, M., Lai, W., Song, G., Li, L., Fan, C., & Pei, H. (2022). Nanoscale organization of two-dimensional multimeric pMHC reagents with DNA origami for CD8+ T cell detection. Nature communications, 13(1), 3916. https://doi.org/10.1038/s41467-022-31684-8
-
Wang, Z., Yang, X., Lee, N. Z., & Cao, X. (2022). Multivalent Aptamer Approach: Designs, Strategies, and Applications. Micromachines, 13(3), 436. https://doi.org/10.3390/mi13030436
-
Rawding, P. A., Bu, J., Wang, J., Kim, D. W., Drelich, A. J., Kim, Y., & Hong, S. (2022). Dendrimers for cancer immunotherapy: Avidity-based drug delivery vehicles for effective anti-tumor immune response. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 14(2), e1752. https://doi.org/10.1002/wnan.1752
-
Jeong, W. J., Bu, J., Jafari, R., Rehak, P., Kubiatowicz, L. J., Drelich, A. J., Owen, R. H., Nair, A., Rawding, P. A., Poellmann, M. J., Hopkins, C. M., Král, P., & Hong, S. (2022). Hierarchically Multivalent Peptide-Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 9(4), e2103098. https://doi.org/10.1002/advs.202103098
-
Rotter, L. K., Berisha, N., Hsu, H. T., Burns, K. H., Andreou, C., & Kircher, M. F. (2022). Visualizing surface marker expression and intratumoral heterogeneity with SERRS-NPs imaging. Nanotheranostics, 6(3), 256–269. https://doi.org/10.7150/ntno.67362
-
Bakshi, A. K., Haider, T., Tiwari, R., & Soni, V. (2022). Critical parameters for design and development of multivalent nanoconstructs: recent trends. Drug delivery and translational research, 1–24. Advance online publication. https://doi.org/10.1007/s13346-021-01103-4
-
Bae, J. H., Kim, H. S., Kim, G., Song, J. J., & Kim, H. S. (2021). Dendrimer-Like Supramolecular Assembly of Proteins with a Tunable Size and Valency Through Stepwise Iterative Growth. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 8(24), e2102991. https://doi.org/10.1002/advs.202102991
-
Makhani, E. Y., Zhang, A., & Haun, J. B. (2021). Quantifying and controlling bond multivalency for advanced nanoparticle targeting to cells. Nano convergence, 8(1), 38. https://doi.org/10.1186/s40580-021-00288-1
-
Nappi, F., Iervolino, A., Avtaar Singh, S. S., & Chello, M. (2021). MicroRNAs in Valvular Heart Diseases: Biological Regulators, Prognostic Markers and Therapeutical Targets. International journal of molecular sciences, 22(22), 12132. https://doi.org/10.3390/ijms222212132
-
Stawicki, C. M., Rinker, T. E., Burns, M., Tonapi, S. S., Galimidi, R. P., Anumala, D., Robinson, J. K., Klein, J. S., & Mallick, P. (2021). Modular fluorescent nanoparticle DNA probes for detection of peptides and proteins. Scientific reports, 11(1), 19921. https://doi.org/10.1038/s41598-021-99084-4
-
Nagy, K. S., Toth, K., Pallinger, E., Takacs, A., Kohidai, L., Jedlovszky-Hajdu, A., Mathe, D., Kovacs, N., Veres, D. S., Szigeti, K., Molnar, K., Krisch, E., & Puskas, J. E. (2021). Folate-Targeted Monodisperse PEG-Based Conjugates Made by Chemo-Enzymatic Methods for Cancer Diagnosis and Treatment. International journal of molecular sciences, 22(19), 10347. https://doi.org/10.3390/ijms221910347
-
Ruiz-López, E., & Schuhmacher, A. J. (2021). Transportation of Single-Domain Antibodies through the Blood-Brain Barrier. Biomolecules, 11(8), 1131. https://doi.org/10.3390/biom11081131
-
Teunissen, A., Burnett, M. E., Prévot, G., Klein, E. D., Bivona, D., & Mulder, W. (2021). Embracing nanomaterials’ interactions with the innate immune system. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 13(6), e1719. https://doi.org/10.1002/wnan.1719
-
Abbas, M., Ovais, M., & Chen, C. (2020). Phage capsid nanoparticles as multivalent inhibitors of viral infections. Science bulletin, 65(24), 2050–2052. https://doi.org/10.1016/j.scib.2020.09.019
-
Alshehri, S., Imam, S. S., Rizwanullah, M., Akhter, S., Mahdi, W., Kazi, M., & Ahmad, J. (2020). Progress of Cancer Nanotechnology as Diagnostics, Therapeutics, and Theranostics Nanomedicine: Preclinical Promise and Translational Challenges. Pharmaceutics, 13(1), 24. https://doi.org/10.3390/pharmaceutics13010024
-
Feiner, R. C., Kemker, I., Krutzke, L., Allmendinger, E., Mandell, D. J., Sewald, N., Kochanek, S., & Müller, K. M. (2020). EGFR-Binding Peptides: From Computational Design towards Tumor-Targeting of Adeno-Associated Virus Capsids. International journal of molecular sciences, 21(24), 9535. https://doi.org/10.3390/ijms21249535
-
Sun, M., , Miyazawa, K., , Pendekanti, T., , Razmi, A., , Firlar, E., , Yang, S., , Shokuhfar, T., , Li, O., , Li, W., , & Sen Gupta, A., (2020). Combination targeting of ‘platelets + fibrin’ enhances clot anchorage efficiency of nanoparticles for vascular drug delivery. Nanoscale, 12(41), 21255–21270. https://doi.org/10.1039/d0nr03633a
-
Luo, D., Johnson, A., Wang, X., Li, H., Erokwu, B. O., Springer, S., Lou, J., Ramamurthy, G., Flask, C. A., Burda, C., Meade, T. J., & Basilion, J. P. (2020). Targeted Radiosensitizers for MR-Guided Radiation Therapy of Prostate Cancer. Nano letters, 20(10), 7159–7167. https://doi.org/10.1021/acs.nanolett.0c02487
-
Chaturvedi, S., Verma, A., & Saharan, V. A. (2020). Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement. Advanced pharmaceutical bulletin, 10(4), 524–541. https://doi.org/10.34172/apb.2020.064
-
Wen, Y., Bai, H., Zhu, J., Song, X., Tang, G., & Li, J. (2020). A supramolecular platform for controlling and optimizing molecular architectures of siRNA targeted delivery vehicles. Science advances, 6(31), eabc2148. https://doi.org/10.1126/sciadv.abc2148
-
Maslanka Figueroa, S., Fleischmann, D., Beck, S., Tauber, P., Witzgall, R., Schweda, F., & Goepferich, A. (2020). Nanoparticles Mimicking Viral Cell Recognition Strategies Are Superior Transporters into Mesangial Cells. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 7(11), 1903204. https://doi.org/10.1002/advs.201903204
-
Qiao, J., Tian, F., Deng, Y., Shang, Y., Chen, S., Chang, E., & Yao, J. (2020). Bio-orthogonal click-targeting nanocomposites for chemo-photothermal synergistic therapy in breast cancer. Theranostics, 10(12), 5305–5321. https://doi.org/10.7150/thno.42445
-
Zhou, X. L., Yang, Y., Wang, S., & Liu, X. W. (2020). Surface Plasmon Resonance Microscopy: From Single-Molecule Sensing to Single-Cell Imaging. Angewandte Chemie (International ed. in English), 59(5), 1776–1785. https://doi.org/10.1002/anie.201908806
-
Farokhirad, S., Bradley, R. P., & Radhakrishnan, R. (2019). Thermodynamic analysis of multivalent binding of functionalized nanoparticles to membrane surface reveals the importance of membrane entropy and nanoparticle entropy in adhesion of flexible nanoparticles. Soft matter, 15(45), 9271–9286. https://doi.org/10.1039/c9sm01653h
-
Myung, J. H., Cha, A., Tam, K. A., Poellmann, M., Borgeat, A., Sharifi, R., Molokie, R. E., Votta-Velis, G., & Hong, S. (2019). Dendrimer-Based Platform for Effective Capture of Tumor Cells after TGFβ1-Induced Epithelial-Mesenchymal Transition. Analytical chemistry, 91(13), 8374–8382. https://doi.org/10.1021/acs.analchem.9b01181
-
Mourtas, S., Christodoulou, P., Klepetsanis, P., Gatos, D., Barlos, K., & Antimisiaris, S. G. (2019). Preparation of Benzothiazolyl-Decorated Nanoliposomes. Molecules (Basel, Switzerland), 24(8), 1540. https://doi.org/10.3390/molecules24081540
-
Csizmar, C. M., Petersburg, J. R., Perry, T. J., Rozumalski, L., Hackel, B. J., & Wagner, C. R. (2019). Multivalent Ligand Binding to Cell Membrane Antigens: Defining the Interplay of Affinity, Valency, and Expression Density. Journal of the American Chemical Society, 141(1), 251–261. https://doi.org/10.1021/jacs.8b09198
-
Jeong, W. J., Bu, J., Kubiatowicz, L. J., Chen, S. S., Kim, Y., & Hong, S. (2018). Peptide-nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms?. Nano convergence, 5(1), 38. https://doi.org/10.1186/s40580-018-0170-1
-
Vieira Gonzaga, R., da Silva Santos, S., da Silva, J. V., Campos Prieto, D., Feliciano Savino, D., Giarolla, J., & Igne Ferreira, E. (2018). Targeting Groups Employed in Selective Dendrons and Dendrimers. Pharmaceutics, 10(4), 219. https://doi.org/10.3390/pharmaceutics10040219
-
Zhang, Q., & Reinhard, B. M. (2018). Ligand Density and Nanoparticle Clustering Cooperate in the Multivalent Amplification of Epidermal Growth Factor Receptor Activation. ACS nano, 12(10), 10473–10485. https://doi.org/10.1021/acsnano.8b06141
-
Zhang, M., Zhu, J., Zheng, Y., Guo, R., Wang, S., Mignani, S., Caminade, A. M., Majoral, J. P., & Shi, X. (2018). Doxorubicin-Conjugated PAMAM Dendrimers for pH-Responsive Drug Release and Folic Acid-Targeted Cancer Therapy. Pharmaceutics, 10(3), 162. https://doi.org/10.3390/pharmaceutics10030162
-
Li, Y., Wang, Y., Huang, G., & Gao, J. (2018). Cooperativity Principles in Self-Assembled Nanomedicine. Chemical reviews, 118(11), 5359–5391. https://doi.org/10.1021/acs.chemrev.8b00195
-
Wonder, E., Simón-Gracia, L., Scodeller, P., Majzoub, R. N., Kotamraju, V. R., Ewert, K. K., Teesalu, T., & Safinya, C. R. (2018). Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo. Biomaterials, 166, 52–63. https://doi.org/10.1016/j.biomaterials.2018.02.052
-
Li, W., Sun, D., Li, N., Shen, Y., Hu, Y., & Tan, J. (2018). Therapy of cervical cancer using 131I-labeled nanoparticles. The Journal of international medical research, 46(6), 2359–2370. https://doi.org/10.1177/0300060518761787
-
Mangadlao, J. D., Wang, X., McCleese, C., Escamilla, M., Ramamurthy, G., Wang, Z., Govande, M., Basilion, J. P., & Burda, C. (2018). Prostate-Specific Membrane Antigen Targeted Gold Nanoparticles for Theranostics of Prostate Cancer. ACS nano, 12(4), 3714–3725. https://doi.org/10.1021/acsnano.8b00940
-
Ma, W., Fu, F., Zhu, J., Huang, R., Zhu, Y., Liu, Z., Wang, J., Conti, P. S., Shi, X., & Chen, K. (2018). 64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging. Nanoscale, 10(13), 6113–6124. https://doi.org/10.1039/C7NR09269E
-
Lu, Y. J., Lin, P. Y., Huang, P. H., Kuo, C. Y., Shalumon, K. T., Chen, M. Y., & Chen, J. P. (2018). Magnetic Graphene Oxide for Dual Targeted Delivery of Doxorubicin and Photothermal Therapy. Nanomaterials (Basel, Switzerland), 8(4), 193. https://doi.org/10.3390/nano8040193
-
Hsu, H. J., Palka-Hamblin, H., Bhide, G. P., Myung, J. H., Cheong, M., Colley, K. J., & Hong, S. (2018). Noncatalytic Endosialidase Enables Surface Capture of Small-Cell Lung Cancer Cells Utilizing Strong Dendrimer-Mediated Enzyme-Glycoprotein Interactions. Analytical chemistry, 90(6), 3670–3675. https://doi.org/10.1021/acs.analchem.8b00427
-
Myung, J. H., Park, S. J., Wang, A. Z., & Hong, S. (2018). Integration of biomimicry and nanotechnology for significantly improved detection of circulating tumor cells (CTCs). Advanced drug delivery reviews, 125, 36–47. https://doi.org/10.1016/j.addr.2017.12.005
-
Jun, S. W., Kwon, J., Chun, S. K., Lee, H. A., Lee, J., Hwang, D. Y., Dong, C. Y., & Kim, C. S. (2018). Modality switching between therapy and imaging based on the excitation wavelength dependence of dual-function agents in folic acid-conjugated graphene oxides. Biomedical optics express, 9(2), 705–716. https://doi.org/10.1364/BOE.9.000705
-
Le Kim, T. H., Jun, H., Kim, J. H., Park, K., Kim, J. S., & Nam, Y. S. (2017). Lipiodol nanoemulsions stabilized with polyglycerol-polycaprolactone block copolymers for theranostic applications. Biomaterials research, 21, 21. https://doi.org/10.1186/s40824-017-0108-4
-
Ren, Y., Sagers, J. E., Landegger, L. D., Bhatia, S. N., & Stankovic, K. M. (2017). Tumor-Penetrating Delivery of siRNA against TNFα to Human Vestibular Schwannomas. Scientific reports, 7(1), 12922. https://doi.org/10.1038/s41598-017-13032-9
-
Jones, S. K., Sarkar, A., Feldmann, D. P., Hoffmann, P., & Merkel, O. M. (2017). Revisiting the value of competition assays in folate receptor-mediated drug delivery. Biomaterials, 138, 35–45. https://doi.org/10.1016/j.biomaterials.2017.05.034
-
Kalia, P., Jain, A., Radha Krishnan, R., Demuth, D. R., & Steinbach-Rankins, J. M. (2017). Peptide-modified nanoparticles inhibit formation of Porphyromonas gingivalis biofilms with Streptococcus gordonii. International journal of nanomedicine, 12, 4553–4562. https://doi.org/10.2147/IJN.S139178
-
Feng, G., Liu, J., Liu, R., Mao, D., Tomczak, N., & Liu, B. (2017). Ultrasmall Conjugated Polymer Nanoparticles with High Specificity for Targeted Cancer Cell Imaging. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 4(9), 1600407. https://doi.org/10.1002/advs.201600407
-
Park, S. M., Aalipour, A., Vermesh, O., Yu, J. H., & Gambhir, S. S. (2017). Towards clinically translatable in vivo nanodiagnostics. Nature reviews. Materials, 2(5), 17014. https://doi.org/10.1038/natrevmats.2017.14
-
Huang, Z., Song, Y., Pang, Z., Zhang, B., Yang, H., Shi, H., Chen, J., Gong, H., Qian, J., & Ge, J. (2017). Targeted delivery of thymosin beta 4 to the injured myocardium using CREKA-conjugated nanoparticles. International journal of nanomedicine, 12, 3023–3036. https://doi.org/10.2147/IJN.S131949
-
Chi, Y. H., Hsiao, J. K., Lin, M. H., Chang, C., Lan, C. H., & Wu, H. C. (2017). Lung Cancer-Targeting Peptides with Multi-subtype Indication for Combinational Drug Delivery and Molecular Imaging. Theranostics, 7(6), 1612–1632. https://doi.org/10.7150/thno.17573
-
Wang, M., Ravindranath, S. R., Rahim, M. K., Botvinick, E. L., & Haun, J. B. (2016). Evolution of Multivalent Nanoparticle Adhesion via Specific Molecular Interactions. Langmuir : the ACS journal of surfaces and colloids, 32(49), 13124–13136. https://doi.org/10.1021/acs.langmuir.6b03014
-
Soni, K. S., Desale, S. S., & Bronich, T. K. (2016). Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. Journal of controlled release : official journal of the Controlled Release Society, 240, 109–126. https://doi.org/10.1016/j.jconrel.2015.11.009
-
Levine, R. M., Dinh, C. V., Harris, M. A., & Kokkoli, E. (2016). Targeting HPV-infected cervical cancer cells with PEGylated liposomes encapsulating siRNA and the role of siRNA complexation with polyethylenimine. Bioengineering & translational medicine, 1(2), 168–180. https://doi.org/10.1002/btm2.10022
-
Jiang, X., Bugno, J., Hu, C., Yang, Y., Herold, T., Qi, J., Chen, P., Gurbuxani, S., Arnovitz, S., Strong, J., Ferchen, K., Ulrich, B., Weng, H., Wang, Y., Huang, H., Li, S., Neilly, M. B., Larson, R. A., Le Beau, M. M., Bohlander, S. K., … Chen, J. (2016). Eradication of Acute Myeloid Leukemia with FLT3 Ligand-Targeted miR-150 Nanoparticles. Cancer research, 76(15), 4470–4480. https://doi.org/10.1158/0008-5472.CAN-15-2949
-
Pearson, R. M., Sen, S., Hsu, H. J., Pasko, M., Gaske, M., Král, P., & Hong, S. (2016). Tuning the Selectivity of Dendron Micelles Through Variations of the Poly(ethylene glycol) Corona. ACS nano, 10(7), 6905–6914. https://doi.org/10.1021/acsnano.6b02708
-
Lee, J. R., Bechstein, D. J., Ooi, C. C., Patel, A., Gaster, R. S., Ng, E., Gonzalez, L. C., & Wang, S. X. (2016). Magneto-nanosensor platform for probing low-affinity protein-protein interactions and identification of a low-affinity PD-L1/PD-L2 interaction. Nature communications, 7, 12220. https://doi.org/10.1038/ncomms12220
-
da Silva Santos, S., Igne Ferreira, E., & Giarolla, J. (2016). Dendrimer Prodrugs. Molecules (Basel, Switzerland), 21(6), 686. https://doi.org/10.3390/molecules21060686
-
Jenkins, R., Bandera, Y. P., Daniele, M. A., Ledford, L. L., Tietje, A., Kelso, A. A., Sehorn, M. G., Wei, Y., Chakrabarti, M., Ray, S. K., & Foulger, S. H. (2016). Sequestering survivin to functionalized nanoparticles: a strategy to enhance apoptosis in cancer cells. Biomaterials science, 4(4), 614–626. https://doi.org/10.1039/c5bm00580a
-
Myung, J. H., Tam, K. A., Park, S. J., Cha, A., & Hong, S. (2016). Recent advances in nanotechnology-based detection and separation of circulating tumor cells. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 8(2), 223–239. https://doi.org/10.1002/wnan.1360
-
Yoo, B., Kavishwar, A., Ross, A., Pantazopoulos, P., Moore, A., & Medarova, Z. (2016). In Vivo Detection of miRNA Expression in Tumors Using an Activatable Nanosensor. Molecular imaging and biology, 18(1), 70–78. https://doi.org/10.1007/s11307-015-0863-3
-
Desale, S. S., Soni, K. S., Romanova, S., Cohen, S. M., & Bronich, T. K. (2015). Targeted delivery of platinum-taxane combination therapy in ovarian cancer. Journal of controlled release : official journal of the Controlled Release Society, 220(Pt B), 651–659. https://doi.org/10.1016/j.jconrel.2015.09.007
-
Myung, J. H., & Hong, S. (2015). Microfluidic devices to enrich and isolate circulating tumor cells. Lab on a chip, 15(24), 4500–4511. https://doi.org/10.1039/c5lc00947b
-
Schneider, C. S., Bhargav, A. G., Perez, J. G., Wadajkar, A. S., Winkles, J. A., Woodworth, G. F., & Kim, A. J. (2015). Surface plasmon resonance as a high throughput method to evaluate specific and non-specific binding of nanotherapeutics. Journal of controlled release : official journal of the Controlled Release Society, 219, 331–344. https://doi.org/10.1016/j.jconrel.2015.09.048
-
Reuter, K. G., Perry, J. L., Kim, D., Luft, J. C., Liu, R., & DeSimone, J. M. (2015). Targeted PRINT Hydrogels: The Role of Nanoparticle Size and Ligand Density on Cell Association, Biodistribution, and Tumor Accumulation. Nano letters, 15(10), 6371–6378. https://doi.org/10.1021/acs.nanolett.5b01362
-
Myung, J. H., Roengvoraphoj, M., Tam, K. A., Ma, T., Memoli, V. A., Dmitrovsky, E., Freemantle, S. J., & Hong, S. (2015). Effective capture of circulating tumor cells from a transgenic mouse lung cancer model using dendrimer surfaces immobilized with anti-EGFR. Analytical chemistry, 87(19), 10096–10102. https://doi.org/10.1021/acs.analchem.5b02766
-
Leroueil, P. R., DiMaggio, S., Leistra, A. N., Blanchette, C. D., Orme, C., Sinniah, K., Orr, B. G., & Banaszak Holl, M. M. (2015). Characterization of Folic Acid and Poly(amidoamine) Dendrimer Interactions with Folate Binding Protein: A Force-Pulling Study. The journal of physical chemistry. B, 119(35), 11506–11512. https://doi.org/10.1021/acs.jpcb.5b05391
-
Yin, L., Yang, Y., Wang, S., Wang, W., Zhang, S., & Tao, N. (2015). Measuring Binding Kinetics of Antibody-Conjugated Gold Nanoparticles with Intact Cells. Small (Weinheim an der Bergstrasse, Germany), 11(31), 3782–3788. https://doi.org/10.1002/smll.201500112
-
Bahrami, B., Mohammadnia-Afrouzi, M., Bakhshaei, P., Yazdani, Y., Ghalamfarsa, G., Yousefi, M., Sadreddini, S., Jadidi-Niaragh, F., & Hojjat-Farsangi, M. (2015). Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, 36(8), 5727–5742. https://doi.org/10.1007/s13277-015-3706-6
-
Chacko, A. M., Han, J., Greineder, C. F., Zern, B. J., Mikitsh, J. L., Nayak, M., Menon, D., Johnston, I. H., Poncz, M., Eckmann, D. M., Davies, P. F., & Muzykantov, V. R. (2015). Collaborative Enhancement of Endothelial Targeting of Nanocarriers by Modulating Platelet-Endothelial Cell Adhesion Molecule-1/CD31 Epitope Engagement. ACS nano, 9(7), 6785–6793. https://doi.org/10.1021/nn505672x
-
Bugno, J., Hsu, H. J., & Hong, S. (2015). Recent advances in targeted drug delivery approaches using dendritic polymers. Biomaterials science, 3(7), 1025–1034. https://doi.org/10.1039/c4bm00351a
-
Chu, D. S., Bocek, M. J., Shi, J., Ta, A., Ngambenjawong, C., Rostomily, R. C., & Pun, S. H. (2015). Multivalent display of pendant pro-apoptotic peptides increases cytotoxic activity. Journal of controlled release : official journal of the Controlled Release Society, 205, 155–161. https://doi.org/10.1016/j.jconrel.2015.01.013
-
Lane, L. A., Qian, X., Smith, A. M., & Nie, S. (2015). Physical chemistry of nanomedicine: understanding the complex behaviors of nanoparticles in vivo. Annual review of physical chemistry, 66, 521–547. https://doi.org/10.1146/annurev-physchem-040513-103718
-
Xie, J., Wang, J., Chen, H., Shen, W., Sinko, P. J., Dong, H., Zhao, R., Lu, Y., Zhu, Y., & Jia, L. (2015). Multivalent conjugation of antibody to dendrimers for the enhanced capture and regulation on colon cancer cells. Scientific reports, 5, 9445. https://doi.org/10.1038/srep09445
-
Xie, J., Dong, H., Chen, H., Zhao, R., Sinko, P. J., Shen, W., Wang, J., Lu, Y., Yang, X., Xie, F., & Jia, L. (2015). Exploring cancer metastasis prevention strategy: interrupting adhesion of cancer cells to vascular endothelia of potential metastatic tissues by antibody-coated nanomaterial. Journal of nanobiotechnology, 13, 9. https://doi.org/10.1186/s12951-015-0072-x
-
Shan, D., Li, J., Cai, P., Prasad, P., Liu, F., Rauth, A. M., & Wu, X. Y. (2015). RGD-conjugated solid lipid nanoparticles inhibit adhesion and invasion of αvβ3 integrin-overexpressing breast cancer cells. Drug delivery and translational research, 5(1), 15–26. https://doi.org/10.1007/s13346-014-0210-2
-
Deng, K., Hou, Z., Li, X., Li, C., Zhang, Y., Deng, X., Cheng, Z., & Lin, J. (2015). Aptamer-mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging. Scientific reports, 5, 7851. https://doi.org/10.1038/srep07851
-
Li, Z., & Gorfe, A. A. (2015). Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations. Nanoscale, 7(2), 814–824. https://doi.org/10.1039/c4nr04834b
-
Zhou, C., Chen, T., Wu, C., Zhu, G., Qiu, L., Cui, C., Hou, W., & Tan, W. (2015). Aptamer CaCO3 nanostructures: a facile, pH-responsive, specific platform for targeted anticancer theranostics. Chemistry, an Asian journal, 10(1), 166–171. https://doi.org/10.1002/asia.201403115
-
Nandwana, V., De, M., Chu, S., Jaiswal, M., Rotz, M., Meade, T. J., & Dravid, V. P. (2015). Theranostic Magnetic Nanostructures (MNS) for Cancer. Cancer treatment and research, 166, 51–83. https://doi.org/10.1007/978-3-319-16555-4_3
-
Bugno, J., Hsu, H. J., & Hong, S. (2015). Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: potential nanocarriers for improved cancer targeting. Journal of drug targeting, 23(7-8), 642–650. https://doi.org/10.3109/1061186X.2015.1052077
-
Hsu, H. J., Sen, S., Pearson, R. M., Uddin, S., Král, P., & Hong, S. (2014). Poly(ethylene glycol) Corona Chain Length Controls End-Group-Dependent Cell Interactions of Dendron Micelles. Macromolecules, 47(19), 6911–6918. https://doi.org/10.1021/ma501258c
-
Sunoqrot, S., Bugno, J., Lantvit, D., Burdette, J. E., & Hong, S. (2014). Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. Journal of controlled release : official journal of the Controlled Release Society, 191, 115–122. https://doi.org/10.1016/j.jconrel.2014.05.006
-
Mulyasasmita, W., Cai, L., Dewi, R. E., Jha, A., Ullmann, S. D., Luong, R. H., Huang, N. F., & Heilshorn, S. C. (2014). Avidity-controlled hydrogels for injectable co-delivery of induced pluripotent stem cell-derived endothelial cells and growth factors. Journal of controlled release : official journal of the Controlled Release Society, 191, 71–81. https://doi.org/10.1016/j.jconrel.2014.05.015
-
van Dongen, M. A., Dougherty, C. A., & Banaszak Holl, M. M. (2014). Multivalent polymers for drug delivery and imaging: the challenges of conjugation. Biomacromolecules, 15(9), 3215–3234. https://doi.org/10.1021/bm500921q
-
Anikeeva, N., Sykulev, Y., Delikatny, E. J., & Popov, A. V. (2014). Core-based lipid nanoparticles as a nanoplatform for delivery of near-infrared fluorescent imaging agents. American journal of nuclear medicine and molecular imaging, 4(6), 507–524.
-
Haji-Valizadeh, H., Modery-Pawlowski, C. L., & Sen Gupta, A. (2014). A factor VIII-derived peptide enables von Willebrand factor (VWF)-binding of artificial platelet nanoconstructs without interfering with VWF-adhesion of natural platelets. Nanoscale, 6(9), 4765–4773. https://doi.org/10.1039/c3nr06400j
-
van Dongen, M. A., Silpe, J. E., Dougherty, C. A., Kanduluru, A. K., Choi, S. K., Orr, B. G., Low, P. S., & Banaszak Holl, M. M. (2014). Avidity mechanism of dendrimer-folic acid conjugates. Molecular pharmaceutics, 11(5), 1696–1706. https://doi.org/10.1021/mp5000967
-
Toy, R., Peiris, P. M., Ghaghada, K. B., & Karathanasis, E. (2014). Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (London, England), 9(1), 121–134. https://doi.org/10.2217/nnm.13.191
-
Chu, D. S., Schellinger, J. G., Bocek, M. J., Johnson, R. N., & Pun, S. H. (2013). Optimization of Tet1 ligand density in HPMA-co-oligolysine copolymers for targeted neuronal gene delivery. Biomaterials, 34(37), 9632–9637. https://doi.org/10.1016/j.biomaterials.2013.08.045
-
Hauert, S., Berman, S., Nagpal, R., & Bhatia, S. N. (2013). A computational framework for identifying design guidelines to increase the penetration of targeted nanoparticles into tumors. Nano today, 8(6), 566–576. https://doi.org/10.1016/j.nantod.2013.11.001
-
Gao, X., Qian, J., Zheng, S., Xiong, Y., Man, J., Cao, B., Wang, L., Ju, S., & Li, C. (2013). Up-regulating blood brain barrier permeability of nanoparticles via multivalent effect. Pharmaceutical research, 30(10), 2538–2548. https://doi.org/10.1007/s11095-013-1004-9
-
Silpe, J. E., Sumit, M., Thomas, T. P., Huang, B., Kotlyar, A., van Dongen, M. A., Banaszak Holl, M. M., Orr, B. G., & Choi, S. K. (2013). Avidity modulation of folate-targeted multivalent dendrimers for evaluating biophysical models of cancer targeting nanoparticles. ACS chemical biology, 8(9), 2063–2071. https://doi.org/10.1021/cb400258d
-
Sheng, W., Chen, T., Tan, W., & Fan, Z. H. (2013). Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices. ACS nano, 7(8), 7067–7076. https://doi.org/10.1021/nn4023747
-
Lee, S., Yang, Y., Fishman, D., Banaszak Holl, M. M., & Hong, S. (2013). Epithelial-mesenchymal transition enhances nanoscale actin filament dynamics of ovarian cancer cells. The journal of physical chemistry. B, 117(31), 9233–9240. https://doi.org/10.1021/jp4055186
-
van Dongen, M. A., Desai, A., Orr, B. G., Baker, J. R., Jr, & Holl, M. M. (2013). Quantitative analysis of generation and branch defects in G5 poly(amidoamine) dendrimer. Polymer, 54(16), 4126–4133. https://doi.org/10.1016/j.polymer.2013.05.062
-
Tsekouras, K., Goncharenko, I., Colvin, M. E., Huang, K. C., & Gopinathan, A. (2013). Design of High-Specificity Nanocarriers by Exploiting Non-Equilibrium Effects in Cancer Cell Targeting. PloS one, 8(6), e65623. https://doi.org/10.1371/journal.pone.0065623
-
Sunoqrot, S., Liu, Y., Kim, D. H., & Hong, S. (2013). In vitro evaluation of dendrimer-polymer hybrid nanoparticles on their controlled cellular targeting kinetics. Molecular pharmaceutics, 10(6), 2157–2166. https://doi.org/10.1021/mp300560n
-
Ayyaswamy, P. S., Muzykantov, V., Eckmann, D. M., & Radhakrishnan, R. (2013). Nanocarrier Hydrodynamics and Binding in Targeted Drug Delivery: Challenges in Numerical Modeling and Experimental Validation. Journal of nanotechnology in engineering and medicine, 4(1), 101011–1010115. https://doi.org/10.1115/1.4024004
-
Pearson, R. M., Patra, N., Hsu, H. J., Uddin, S., Král, P., & Hong, S. (2013). Positively Charged Dendron Micelles Display Negligible Cellular Interactions. ACS macro letters, 2(1), 77–81. https://doi.org/10.1021/mz300533w
-
Huang, W. Y., Davies, G. L., & Davis, J. J. (2013). High signal contrast gating with biomodified Gd doped mesoporous nanoparticles. Chemical communications (Cambridge, England), 49(1), 60–62. https://doi.org/10.1039/c2cc37545a
-
Xu, S., Olenyuk, B. Z., Okamoto, C. T., & Hamm-Alvarez, S. F. (2013). Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Advanced drug delivery reviews, 65(1), 121–138. https://doi.org/10.1016/j.addr.2012.09.041
-
Ward, B. B., Huang, B., Desai, A., Cheng, X. M., Vartanian, M., Zong, H., Shi, X., Thomas, T. P., Kotlyar, A. E., Van Der Spek, A., Leroueil, P. R., & Baker, J. R., Jr (2013). Sustained analgesia achieved through esterase-activated morphine prodrugs complexed with PAMAM dendrimer. Pharmaceutical research, 30(1), 247–256. https://doi.org/10.1007/s11095-012-0869-3
-
Thomas, T. P., Joice, M., Sumit, M., Silpe, J. E., Kotlyar, A., Bharathi, S., Kukowska-Latallo, J., Baker, J. R., & Choi, S. K. (2013). Design and in vitro validation of multivalent dendrimer methotrexates as a folate-targeting anticancer therapeutic. Current pharmaceutical design, 19(37), 6594–6605. https://doi.org/10.2174/1381612811319370004
-
Xu, L., Josan, J. S., Vagner, J., Caplan, M. R., Hruby, V. J., Mash, E. A., Lynch, R. M., Morse, D. L., & Gillies, R. J. (2012). Heterobivalent ligands target cell-surface receptor combinations in vivo. Proceedings of the National Academy of Sciences of the United States of America, 109(52), 21295–21300. https://doi.org/10.1073/pnas.1211762109
-
Canovi, M., Lucchetti, J., Stravalaci, M., Re, F., Moscatelli, D., Bigini, P., Salmona, M., & Gobbi, M. (2012). Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. Sensors (Basel, Switzerland), 12(12), 16420–16432. https://doi.org/10.3390/s121216420
-
Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R., & Tsourkas, A. (2012). Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science (New York, N.Y.), 338(6109), 903–910. https://doi.org/10.1126/science.1226338
-
Ren, Y., Hauert, S., Lo, J. H., & Bhatia, S. N. (2012). Identification and characterization of receptor-specific peptides for siRNA delivery. ACS nano, 6(10), 8620–8631. https://doi.org/10.1021/nn301975s
-
Thomas, T. P., Huang, B., Choi, S. K., Silpe, J. E., Kotlyar, A., Desai, A. M., Zong, H., Gam, J., Joice, M., & Baker, J. R., Jr (2012). Polyvalent dendrimer-methotrexate as a folate receptor-targeted cancer therapeutic. Molecular pharmaceutics, 9(9), 2669–2676. https://doi.org/10.1021/mp3002232
-
Stravalaci, M., Bastone, A., Beeg, M., Cagnotto, A., Colombo, L., Di Fede, G., Tagliavini, F., Cantù, L., Del Favero, E., Mazzanti, M., Chiesa, R., Salmona, M., Diomede, L., & Gobbi, M. (2012). Specific recognition of biologically active amyloid-β oligomers by a new surface plasmon resonance-based immunoassay and an in vivo assay in Caenorhabditis elegans. The Journal of biological chemistry, 287(33), 27796–27805. https://doi.org/10.1074/jbc.M111.334979
-
Gu, L., Ruff, L. E., Qin, Z., Corr, M., Hedrick, S. M., & Sailor, M. J. (2012). Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Advanced materials (Deerfield Beach, Fla.), 24(29), 3981–3987. https://doi.org/10.1002/adma.201200776
-
Yang, Y., Sunoqrot, S., Stowell, C., Ji, J., Lee, C. W., Kim, J. W., Khan, S. A., & Hong, S. (2012). Effect of size, surface charge, and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. Biomacromolecules, 13(7), 2154–2162. https://doi.org/10.1021/bm300545b
-
Mullen, D. G., Desai, A., van Dongen, M. A., Barash, M., Baker, J. R., Jr, & Banaszak Holl, M. M. (2012). Best practices for purification and characterization of PAMAM dendrimer. Macromolecules, 45(12), 5316–5320. https://doi.org/10.1021/ma300485p
-
Hassouneh, W., Fischer, K., MacEwan, S. R., Branscheid, R., Fu, C. L., Liu, R., Schmidt, M., & Chilkoti, A. (2012). Unexpected multivalent display of proteins by temperature triggered self-assembly of elastin-like polypeptide block copolymers. Biomacromolecules, 13(5), 1598–1605. https://doi.org/10.1021/bm300321n
-
Sunoqrot, S., Bae, J. W., Pearson, R. M., Shyu, K., Liu, Y., Kim, D. H., & Hong, S. (2012). Temporal control over cellular targeting through hybridization of folate-targeted dendrimers and PEG-PLA nanoparticles. Biomacromolecules, 13(4), 1223–1230. https://doi.org/10.1021/bm300316n
-
Choi, S. K., Thomas, T. P., Li, M. H., Desai, A., Kotlyar, A., & Baker, J. R., Jr (2012). Photochemical release of methotrexate from folate receptor-targeting PAMAM dendrimer nanoconjugate. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 11(4), 653–660. https://doi.org/10.1039/c2pp05355a
-
Huang, Y. Y., Sharma, S. K., Dai, T., Chung, H., Yaroslavsky, A., Garcia-Diaz, M., Chang, J., Chiang, L. Y., & Hamblin, M. R. (2012). Can nanotechnology potentiate photodynamic therapy?. Nanotechnology reviews, 1(2), 111–146. https://doi.org/10.1515/ntrev-2011-0005
-
Witte, A. B., Timmer, C. M., Gam, J. J., Choi, S. K., Banaszak Holl, M. M., Orr, B. G., Baker, J. R., & Sinniah, K. (2012). Biophysical characterization of a riboflavin-conjugated dendrimer platform for targeted drug delivery. Biomacromolecules, 13(2), 507–516. https://doi.org/10.1021/bm201566g
-
Choi, S. K., Verma, M., Silpe, J., Moody, R. E., Tang, K., Hanson, J. J., & Baker, J. R., Jr (2012). A photochemical approach for controlled drug release in targeted drug delivery. Bioorganic & medicinal chemistry, 20(3), 1281–1290. https://doi.org/10.1016/j.bmc.2011.12.020
-
Agasti, S. S., Liong, M., Tassa, C., Chung, H. J., Shaw, S. Y., Lee, H., & Weissleder, R. (2012). Supramolecular host-guest interaction for labeling and detection of cellular biomarkers. Angewandte Chemie (International ed. in English), 51(2), 450–454. https://doi.org/10.1002/anie.201105670
-
Li, M. H., Choi, S. K., Thomas, T. P., Desai, A., Lee, K. H., Kotlyar, A., Banaszak Holl, M. M., & Baker, J. R., Jr (2012). Dendrimer-based multivalent methotrexates as dual acting nanoconjugates for cancer cell targeting. European journal of medicinal chemistry, 47(1), 560–572. https://doi.org/10.1016/j.ejmech.2011.11.027
-
Muzykantov, V. R., Radhakrishnan, R., & Eckmann, D. M. (2012). Dynamic factors controlling targeting nanocarriers to vascular endothelium. Current drug metabolism, 13(1), 70–81. https://doi.org/10.2174/138920012798356916
-
Myung, J. H., Gajjar, K. A., Saric, J., Eddington, D. T., & Hong, S. (2011). Dendrimer-mediated multivalent binding for the enhanced capture of tumor cells. Angewandte Chemie (International ed. in English), 50(49), 11769–11772. https://doi.org/10.1002/anie.201105508
-
Waite, C. L., & Roth, C. M. (2011). Binding and transport of PAMAM-RGD in a tumor spheroid model: the effect of RGD targeting ligand density. Biotechnology and bioengineering, 108(12), 2999–3008. https://doi.org/10.1002/bit.23255
-
Ullal, A. V., Reiner, T., Yang, K. S., Gorbatov, R., Min, C., Issadore, D., Lee, H., & Weissleder, R. (2011). Nanoparticle-mediated measurement of target-drug binding in cancer cells. ACS nano, 5(11), 9216–9224. https://doi.org/10.1021/nn203450p
-
Mullen, D. G., & Banaszak Holl, M. M. (2011). Heterogeneous ligand-nanoparticle distributions: a major obstacle to scientific understanding and commercial translation. Accounts of chemical research, 44(11), 1135–1145. https://doi.org/10.1021/ar1001389
-
Chen, T., Shukoor, M. I., Wang, R., Zhao, Z., Yuan, Q., Bamrungsap, S., Xiong, X., & Tan, W. (2011). Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS nano, 5(10), 7866–7873. https://doi.org/10.1021/nn202073m
-
Bae, J. W., Pearson, R. M., Patra, N., Sunoqrot, S., Vuković, L., Král, P., & Hong, S. (2011). Dendron-mediated self-assembly of highly PEGylated block copolymers: a modular nanocarrier platform. Chemical communications (Cambridge, England), 47(37), 10302–10304. https://doi.org/10.1039/c1cc14331j
-
Cheng, C. J., & Saltzman, W. M. (2011). Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell-penetrating peptides. Biomaterials, 32(26), 6194–6203. https://doi.org/10.1016/j.biomaterials.2011.04.053
-
Singh, A. N., Liu, W., Hao, G., Kumar, A., Gupta, A., Öz, O. K., Hsieh, J. T., & Sun, X. (2011). Multivalent bifunctional chelator scaffolds for gallium-68 based positron emission tomography imaging probe design: signal amplification via multivalency. Bioconjugate chemistry, 22(8), 1650–1662. https://doi.org/10.1021/bc200227d
-
Swaminathan, T. N., Liu, J., Balakrishnan, U., Ayyaswamy, P. S., Radhakrishnan, R., & Eckmann, D. M. (2011). Dynamic factors controlling carrier anchoring on vascular cells. IUBMB life, 63(8), 640–647. https://doi.org/10.1002/iub.475
-
Ashley, C. E., Carnes, E. C., Phillips, G. K., Durfee, P. N., Buley, M. D., Lino, C. A., Padilla, D. P., Phillips, B., Carter, M. B., Willman, C. L., Brinker, C. J., Caldeira, J., Chackerian, B., Wharton, W., & Peabody, D. S. (2011). Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS nano, 5(7), 5729–5745. https://doi.org/10.1021/nn201397z
-
Liu, J., Agrawal, N. J., Calderon, A., Ayyaswamy, P. S., Eckmann, D. M., & Radhakrishnan, R. (2011). Multivalent binding of nanocarrier to endothelial cells under shear flow. Biophysical journal, 101(2), 319–326. https://doi.org/10.1016/j.bpj.2011.05.063
-
Martinez-Veracoechea, F. J., & Frenkel, D. (2011). Designing super selectivity in multivalent nano-particle binding. Proceedings of the National Academy of Sciences of the United States of America, 108(27), 10963–10968. https://doi.org/10.1073/pnas.1105351108
-
Chittasupho, C., Siahaan, T. J., Vines, C. M., & Berkland, C. (2011). Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics. Therapeutic delivery, 2(7), 873–889. https://doi.org/10.4155/tde.11.60
-
Zhang, X., Liu, H., Miao, Z., Kimura, R., Fan, F., & Cheng, Z. (2011). Macrocyclic chelator assembled RGD multimers for tumor targeting. Bioorganic & medicinal chemistry letters, 21(11), 3423–3426. https://doi.org/10.1016/j.bmcl.2011.03.110
-
Zhang, R., Lu, W., Wen, X., Huang, M., Zhou, M., Liang, D., & Li, C. (2011). Annexin A5-conjugated polymeric micelles for dual SPECT and optical detection of apoptosis. Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 52(6), 958–964. https://doi.org/10.2967/jnumed.110.083220
-
Plantinga, A., Witte, A., Li, M. H., Harmon, A., Choi, S. K., Banaszak Holl, M. M., Orr, B. G., Baker, J. R., Jr, & Sinniah, K. (2011). Bioanalytical Screening of Riboflavin Antagonists for Targeted Drug Delivery – A Thermodynamic and Kinetic Study. ACS medicinal chemistry letters, 2(5), 363–367. https://doi.org/10.1021/ml100296z
-
Mullen, D. G., McNerny, D. Q., Desai, A., Cheng, X. M., Dimaggio, S. C., Kotlyar, A., Zhong, Y., Qin, S., Kelly, C. V., Thomas, T. P., Majoros, I., Orr, B. G., Baker, J. R., & Banaszak Holl, M. M. (2011). Design, synthesis, and biological functionality of a dendrimer-based modular drug delivery platform. Bioconjugate chemistry, 22(4), 679–689. https://doi.org/10.1021/bc100360v
-
Zhang, Y., Thomas, T. P., Lee, K. H., Li, M., Zong, H., Desai, A. M., Kotlyar, A., Huang, B., Holl, M. M., & Baker, J. R., Jr (2011). Polyvalent saccharide-functionalized generation 3 poly(amidoamine) dendrimer-methotrexate conjugate as a potential anticancer agent. Bioorganic & medicinal chemistry, 19(8), 2557–2564. https://doi.org/10.1016/j.bmc.2011.03.019
-
Bae, K. H., Chung, H. J., & Park, T. G. (2011). Nanomaterials for cancer therapy and imaging. Molecules and cells, 31(4), 295–302. https://doi.org/10.1007/s10059-011-0051-5
-
Chittasupho, C., Shannon, L., Siahaan, T. J., Vines, C. M., & Berkland, C. (2011). Nanoparticles targeting dendritic cell surface molecules effectively block T cell conjugation and shift response. ACS nano, 5(3), 1693–1702. https://doi.org/10.1021/nn102159g
-
Myung, J. H., Gajjar, K. A., Pearson, R. M., Launiere, C. A., Eddington, D. T., & Hong, S. (2011). Direct measurements on CD24-mediated rolling of human breast cancer MCF-7 cells on E-selectin. Analytical chemistry, 83(3), 1078–1083. https://doi.org/10.1021/ac102901e
-
Ledin, P. A., Friscourt, F., Guo, J., & Boons, G. J. (2011). Convergent assembly and surface modification of multifunctional dendrimers by three consecutive click reactions. Chemistry (Weinheim an der Bergstrasse, Germany), 17(3), 839–846. https://doi.org/10.1002/chem.201002052
-
Zhang, M., Guo, R., Wang, Y., Cao, X., Shen, M., & Shi, X. (2011). Multifunctional dendrimer/combretastatin A4 inclusion complexes enable in vitro targeted cancer therapy. International journal of nanomedicine, 6, 2337–2349. https://doi.org/10.2147/IJN.S24705
-
Mansoori, G. A., Brandenburg, K. S., & Shakeri-Zadeh, A. (2010). A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers, 2(4), 1911–1928. https://doi.org/10.3390/cancers2041911
-
Iqbal, U., Albaghdadi, H., Luo, Y., Arbabi, M., Desvaux, C., Veres, T., Stanimirovic, D., & Abulrob, A. (2010). Molecular imaging of glioblastoma multiforme using anti-insulin-like growth factor-binding protein-7 single-domain antibodies. British journal of cancer, 103(10), 1606–1616. https://doi.org/10.1038/sj.bjc.6605937
-
Park, S., Kang, S., Veach, A. J., Vedvyas, Y., Zarnegar, R., Kim, J. Y., & Jin, M. M. (2010). Self-assembled nanoplatform for targeted delivery of chemotherapy agents via affinity-regulated molecular interactions. Biomaterials, 31(30), 7766–7775. https://doi.org/10.1016/j.biomaterials.2010.06.038
-
Poon, Z., Chen, S., Engler, A. C., Lee, H. I., Atas, E., von Maltzahn, G., Bhatia, S. N., & Hammond, P. T. (2010). Ligand-clustered “patchy” nanoparticles for modulated cellular uptake and in vivo tumor targeting. Angewandte Chemie (International ed. in English), 49(40), 7266–7270. https://doi.org/10.1002/anie.201003445
-
Mullen, D. G., Borgmeier, E. L., Desai, A. M., van Dongen, M. A., Barash, M., Cheng, X. M., Baker, J. R., Jr, & Banaszak Holl, M. M. (2010). Isolation and characterization of dendrimers with precise numbers of functional groups. Chemistry (Weinheim an der Bergstrasse, Germany), 16(35), 10675–10678. https://doi.org/10.1002/chem.201001175
-
Mullen, D. G., Borgmeier, E. L., Fang, M., McNerny, D. Q., Desai, A., Baker, J. R., Jr, Orr, B. G., & Holl, M. M. (2010). Effect of Mass Transport in the Synthesis of Partially Acetylated Dendrimer: Implications for Functional Ligand-Nanoparticle Distributions. Macromolecules, 43(16), 6577–6587. https://doi.org/10.1021/ma100663c
-
Krovi, S. A., Smith, D., & Nguyen, S. T. (2010). “Clickable” polymer nanoparticles: a modular scaffold for surface functionalization. Chemical communications (Cambridge, England), 46(29), 5277–5279. https://doi.org/10.1039/c0cc00232a
-
Liu, Z., & Peng, R. (2010). Inorganic nanomaterials for tumor angiogenesis imaging. European journal of nuclear medicine and molecular imaging, 37 Suppl 1, S147–S163. https://doi.org/10.1007/s00259-010-1452-y
-
Wang, S., & Dormidontova, E. E. (2010). Nanoparticle design optimization for enhanced targeting: Monte Carlo simulations. Biomacromolecules, 11(7), 1785–1795. https://doi.org/10.1021/bm100248e
-
Hild, W., Pollinger, K., Caporale, A., Cabrele, C., Keller, M., Pluym, N., Buschauer, A., Rachel, R., Tessmar, J., Breunig, M., & Goepferich, A. (2010). G protein-coupled receptors function as logic gates for nanoparticle binding and cell uptake. Proceedings of the National Academy of Sciences of the United States of America, 107(23), 10667–10672. https://doi.org/10.1073/pnas.0912782107
-
McNerny, D. Q., Leroueil, P. R., & Baker, J. R. (2010). Understanding specific and nonspecific toxicities: a requirement for the development of dendrimer-based pharmaceuticals. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2(3), 249–259. https://doi.org/10.1002/wnan.79
-
Ruoslahti, E., Bhatia, S. N., & Sailor, M. J. (2010). Targeting of drugs and nanoparticles to tumors. The Journal of cell biology, 188(6), 759–768. https://doi.org/10.1083/jcb.200910104
-
Gunaseelan, S., Gunaseelan, K., Deshmukh, M., Zhang, X., & Sinko, P. J. (2010). Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Advanced drug delivery reviews, 62(4-5), 518–531. https://doi.org/10.1016/j.addr.2009.11.021
-
Zhang, Y., Thomas, T. P., Desai, A., Zong, H., Leroueil, P. R., Majoros, I. J., & Baker, J. R., Jr (2010). Targeted dendrimeric anticancer prodrug: a methotrexate-folic acid-poly(amidoamine) conjugate and a novel, rapid, “one pot” synthetic approach. Bioconjugate chemistry, 21(3), 489–495. https://doi.org/10.1021/bc9003958
-
Veiseh, O., Gunn, J. W., & Zhang, M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced drug delivery reviews, 62(3), 284–304. https://doi.org/10.1016/j.addr.2009.11.002
-
Mullen, D. G., Fang, M., Desai, A., Baker, J. R., Orr, B. G., & Banaszak Holl, M. M. (2010). A quantitative assessment of nanoparticle-ligand distributions: implications for targeted drug and imaging delivery in dendrimer conjugates. ACS nano, 4(2), 657–670. https://doi.org/10.1021/nn900999c
-
Chittasupho, C., Manikwar, P., Krise, J. P., Siahaan, T. J., & Berkland, C. (2010). cIBR effectively targets nanoparticles to LFA-1 on acute lymphoblastic T cells. Molecular pharmaceutics, 7(1), 146–155. https://doi.org/10.1021/mp900185u
-
Tassa, C., Duffner, J. L., Lewis, T. A., Weissleder, R., Schreiber, S. L., Koehler, A. N., & Shaw, S. Y. (2010). Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles. Bioconjugate chemistry, 21(1), 14–19. https://doi.org/10.1021/bc900438a
-
Djohari, H., & Dormidontova, E. E. (2009). Kinetics of nanoparticle targeting by dissipative particle dynamics simulations. Biomacromolecules, 10(11), 3089–3097. https://doi.org/10.1021/bm900785c
-
Shi, X., Wang, S. H., Lee, I., Shen, M., & Baker, J. R., Jr (2009). Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells. Biopolymers, 91(11), 936–942. https://doi.org/10.1002/bip.21279
-
Waite, C. L., & Roth, C. M. (2009). PAMAM-RGD conjugates enhance siRNA delivery through a multicellular spheroid model of malignant glioma. Bioconjugate chemistry, 20(10), 1908–1916. https://doi.org/10.1021/bc900228m
-
McNerny, D. Q., Kukowska-Latallo, J. F., Mullen, D. G., Wallace, J. M., Desai, A. M., Shukla, R., Huang, B., Banaszak Holl, M. M., & Baker, J. R., Jr (2009). RGD dendron bodies; synthetic avidity agents with defined and potentially interchangeable effector sites that can substitute for antibodies. Bioconjugate chemistry, 20(10), 1853–1859. https://doi.org/10.1021/bc900217h
-
Karathanasis, E., Geigerman, C. M., Parkos, C. A., Chan, L., Bellamkonda, R. V., & Jaye, D. L. (2009). Selective targeting of nanocarriers to neutrophils and monocytes. Annals of biomedical engineering, 37(10), 1984–1992. https://doi.org/10.1007/s10439-009-9702-5
-
Lee, S. M., Chen, H., O’Halloran, T. V., & Nguyen, S. T. (2009). “Clickable” polymer-caged nanobins as a modular drug delivery platform. Journal of the American Chemical Society, 131(26), 9311–9320. https://doi.org/10.1021/ja9017336
-
Shi, X., Wang, S. H., Van Antwerp, M. E., Chen, X., & Baker, J. R., Jr (2009). Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. The Analyst, 134(7), 1373–1379. https://doi.org/10.1039/b902199j
-
Majoros, I. J., Williams, C. R., Becker, A. C., & Baker, J. R., Jr (2009). Surface interaction and behavior of poly(amidoamine) dendrimers: deformability and lipid bilayer disruption. Journal of computational and theoretical nanoscience, 6(7), 1430–1436. https://doi.org/10.1166/jctn.2009.1189
-
Wu, W., Hsiao, S. C., Carrico, Z. M., & Francis, M. B. (2009). Genome-free viral capsids as multivalent carriers for taxol delivery. Angewandte Chemie (International ed. in English), 48(50), 9493–9497. https://doi.org/10.1002/anie.200902426
-
Johnson, R. N., Kopecková, P., & Kopecek, J. (2009). Synthesis and evaluation of multivalent branched HPMA copolymer-Fab’ conjugates targeted to the B-cell antigen CD20. Bioconjugate chemistry, 20(1), 129–137. https://doi.org/10.1021/bc800351m
-
Hagy, M. C., Wang, S., & Dormidontova, E. E. (2008). Optimization of functionalized polymer layers for specific targeting of mobile receptors on cell surfaces. Langmuir : the ACS journal of surfaces and colloids, 24(22), 13037–13047. https://doi.org/10.1021/la801935h
-
Kelly, C. V., Leroueil, P. R., Orr, B. G., Banaszak Holl, M. M., & Andricioaei, I. (2008). Poly(amidoamine) dendrimers on lipid bilayers II: Effects of bilayer phase and dendrimer termination. The journal of physical chemistry. B, 112(31), 9346–9353. https://doi.org/10.1021/jp8013783
-
Park, J. H., von Maltzahn, G., Zhang, L., Schwartz, M. P., Ruoslahti, E., Bhatia, S. N., & Sailor, M. J. (2008). Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging. Advanced materials (Deerfield Beach, Fla.), 20(9), 1630–1635. https://doi.org/10.1002/adma.200800004
-
Heath, J. R., & Davis, M. E. (2008). Nanotechnology and cancer. Annual review of medicine, 59, 251–265. https://doi.org/10.1146/annurev.med.59.061506.185523
-
Zhang, K., Rossin, R., Hagooly, A., Chen, Z., Welch, M. J., & Wooley, K. L. (2008). Folate-mediated Cell Uptake of Shell-crosslinked Spheres and Cylinders. Journal of polymer science. Part A, Polymer chemistry, 46(22), 7578–7583. https://doi.org/10.1002/pola.23020
-
Destito, G., Yeh, R., Rae, C. S., Finn, M. G., & Manchester, M. (2007). Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chemistry & biology, 14(10), 1152–1162. https://doi.org/10.1016/j.chembiol.2007.08.015