-
Zhang, T., Li, N., Wang, R., Sun, Y., He, X., Lu, X., Chu, L., & Sun, K. (2023). Enhanced therapeutic efficacy of doxorubicin against multidrug-resistant breast cancer with reduced cardiotoxicity.
Drug delivery,
30(1), 2189118.
https://doi.org/10.1080/10717544.2023.2189118
-
Kwantwi L. B. (2023). The dual and multifaceted role of relaxin-2 in cancer.
Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 10.1007/s12094-023-03146-0. Advance online publication.
https://doi.org/10.1007/s12094-023-03146-0
-
Haq Khan, Z. U., Khan, T. M., Khan, A., Shah, N. S., Muhammad, N., Tahir, K., Iqbal, J., Rahim, A., Khasim, S., Ahmad, I., Shabbir, K., Gul, N. S., & Wu, J. (2023). Brief review: Applications of nanocomposite in electrochemical sensor and drugs delivery.
Frontiers in chemistry,
11, 1152217.
https://doi.org/10.3389/fchem.2023.1152217
-
Wang, Q., Atluri, K., Tiwari, A. K., & Babu, R. J. (2023). Exploring the Application of Micellar Drug Delivery Systems in Cancer Nanomedicine.
Pharmaceuticals (Basel, Switzerland),
16(3), 433.
https://doi.org/10.3390/ph16030433
-
Schröder, M., Petrova, M., Dobrikov, G. M., Grancharov, G., Momekova, D., Petrov, P. D., & Ugrinova, I. (2023). Micellar Form of a Ferrocene-Containing Camphor Sulfonamide with Improved Aqueous Solubility and Tumor Curing Potential.
Pharmaceutics,
15(3), 791.
https://doi.org/10.3390/pharmaceutics15030791
-
Verma, J., Warsame, C., Seenivasagam, R. K., Katiyar, N. K., Aleem, E., & Goel, S. (2023). Nanoparticle-mediated cancer cell therapy: basic science to clinical applications.
Cancer metastasis reviews, 10.1007/s10555-023-10086-2. Advance online publication.
https://doi.org/10.1007/s10555-023-10086-2
-
Mei, B., Lin, T. W., Sheridan, G. S., Evans, C. M., Sing, C. E., & Schweizer, K. S. (2023). How Segmental Dynamics and Mesh Confinement Determine the Selective Diffusivity of Molecules in Cross-Linked Dense Polymer Networks.
ACS central science,
9(3), 508–518.
https://doi.org/10.1021/acscentsci.2c01373
-
Ji, H., Lou, X., Jiao, J., Li, Y., Dai, K., & Jia, X. (2023). Preliminary Structural Characterization of Selenium Nanoparticle Composites Modified by
Astragalus Polysaccharide and the Cytotoxicity Mechanism on Liver Cancer Cells.
Molecules (Basel, Switzerland),
28(4), 1561.
https://doi.org/10.3390/molecules28041561
-
Gostyńska, A., Czerniel, J., Kuźmińska, J., Brzozowski, J., Majchrzak-Celińska, A., Krajka-Kuźniak, V., & Stawny, M. (2023). Honokiol-Loaded Nanoemulsion for Glioblastoma Treatment: Statistical Optimization, Physicochemical Characterization, and an In Vitro Toxicity Assay.
Pharmaceutics,
15(2), 448.
https://doi.org/10.3390/pharmaceutics15020448
-
Josowitz, A. D., Bindra, R. S., & Saltzman, W. M. (2022). Polymer nanocarriers for targeted local delivery of agents in treating brain tumors.
Nanotechnology,
34(7), 10.1088/1361-6528/ac9683.
https://doi.org/10.1088/1361-6528/ac9683
-
Albert, C., Bracaglia, L., Koide, A., DiRito, J., Lysyy, T., Harkins, L., Edwards, C., Richfield, O., Grundler, J., Zhou, K., Denbaum, E., Ketavarapu, G., Hattori, T., Perincheri, S., Langford, J., Feizi, A., Haakinson, D., Hosgood, S. A., Nicholson, M. L., Pober, J. S., … Tietjen, G. T. (2022). Monobody adapter for functional antibody display on nanoparticles for adaptable targeted delivery applications.
Nature communications,
13(1), 5998.
https://doi.org/10.1038/s41467-022-33490-8
-
Fei, Y., Ma, Y., Zhang, H., Li, H., Feng, G., & Fang, J. (2022). Nanotechnology for research and treatment of the intestine.
Journal of nanobiotechnology,
20(1), 430.
https://doi.org/10.1186/s12951-022-01517-3
-
Zhang, B., Zhang, Y., Dang, W., Xing, B., Yu, C., Guo, P., Pi, J., Deng, X., Qi, D., & Liu, Z. (2022). The anti-tumor and renoprotection study of E-[c(RGDfK)2]/folic acid co-modified nanostructured lipid carrier loaded with doxorubicin hydrochloride/salvianolic acid A.
Journal of nanobiotechnology,
20(1), 425.
https://doi.org/10.1186/s12951-022-01628-x
-
Bozzer, S., Dal Bo, M., Grimaldi, M. C., Toffoli, G., & Macor, P. (2022). Nanocarriers as a Delivery Platform for Anticancer Treatment: Biological Limits and Perspectives in B-Cell Malignancies.
Pharmaceutics,
14(9), 1965.
https://doi.org/10.3390/pharmaceutics14091965
-
Cao, M., Shi, E., Wang, H., Mao, L., Wu, Q., Li, X., Liang, Y., Yang, X., Wang, Y., & Li, C. (2022). Personalized Targeted Therapeutic Strategies against Oral Squamous Cell Carcinoma. An Evidence-Based Review of Literature.
International journal of nanomedicine,
17, 4293–4306.
https://doi.org/10.2147/IJN.S377816
-
Sampath, G., Chen, Y. Y., Rameshkumar, N., Krishnan, M., Nagarajan, K., & Shyu, D. (2022). Biologically Synthesized Silver Nanoparticles and Their Diverse Applications.
Nanomaterials (Basel, Switzerland),
12(18), 3126.
https://doi.org/10.3390/nano12183126
-
Al-Numair, N. S., Theyab, A., Alzahrani, F., Shams, A. M., Al-Anazi, I. O., Oyouni, A. A. A., Al-Amer, O. M., Mavromatis, C., Saadeldin, I. M., Abdali, W. A., & Hawsawi, Y. M. (2022). Camels' biological fluids contained nanobodies: promising avenue in cancer therapy.
Cancer cell international,
22(1), 279.
https://doi.org/10.1186/s12935-022-02696-7
-
Sivagnanam, S., Das, K., Basak, M., Mahata, T., Stewart, A., Maity, B., & Das, P. (2022). Self-assembled dipeptide based fluorescent nanoparticles as a platform for developing cellular imaging probes and targeted drug delivery chaperones.
Nanoscale advances,
4(6), 1694–1706.
https://doi.org/10.1039/d1na00885d
-
-
Lei, W., Yang, C., Wu, Y., Ru, G., He, X., Tong, X., & Wang, S. (2022). Nanocarriers surface engineered with cell membranes for cancer targeted chemotherapy.
Journal of nanobiotechnology,
20(1), 45.
https://doi.org/10.1186/s12951-022-01251-w
-
-
Xu, W. J., Cai, J. X., Li, Y. J., Wu, J. Y., & Xiang, D. (2022). Recent progress of macrophage vesicle-based drug delivery systems.
Drug delivery and translational research, 10.1007/s13346-021-01110-5. Advance online publication.
https://doi.org/10.1007/s13346-021-01110-5
-
-
Vemuri, V. D., & Lankalapalli, S. (2021). Cocrystal Construction Between Rosuvastatin Calcium and L-asparagine with Enhanced Solubility and Dissolution Rate.
Turkish journal of pharmaceutical sciences,
18(6), 790–798.
https://doi.org/10.4274/tjps.galenos.2021.62333
-
Li, C., Luo, Z., Yang, L., Chen, J., Cheng, K., Xue, Y., Liu, G., Luo, X., & Wu, F. (2021). Self-assembled porphyrin polymer nanoparticles with NIR-II emission and highly efficient photothermal performance in cancer therapy.
Materials today. Bio,
13, 100198.
https://doi.org/10.1016/j.mtbio.2021.100198
-
Li, W., Zhang, X., Nan, Y., Jia, L., Sun, J., Zhang, L., & Wang, Y. (2021). Hyaluronidase and pH Dual-Responsive Nanoparticles for Targeted Breast Cancer Stem Cells.
Frontiers in oncology,
11, 760423.
https://doi.org/10.3389/fonc.2021.760423
-
Sadat, S., Wuest, M., Paiva, I. M., Munira, S., Sarrami, N., Sanaee, F., Yang, X., Paladino, M., Binkhathlan, Z., Karimi-Busheri, F., Martin, G. R., Jirik, F. R., Murray, D., Gamper, A. M., Hall, D. G., Weinfeld, M., & Lavasanifar, A. (2021). Nano-Delivery of a Novel Inhibitor of Polynucleotide Kinase/Phosphatase (PNKP) for Targeted Sensitization of Colorectal Cancer to Radiation-Induced DNA Damage.
Frontiers in oncology,
11, 772920.
https://doi.org/10.3389/fonc.2021.772920
-
López-Molina, S., Galiana-Roselló, C., Galiana, C., Gil-Martínez, A., Bandeira, S., & González-García, J. (2021). Alkaloids as Photosensitisers for the Inactivation of Bacteria.
Antibiotics (Basel, Switzerland),
10(12), 1505.
https://doi.org/10.3390/antibiotics10121505
-
-
Truong, N., Black, S. K., Shaw, J., Scotland, B. L., & Pearson, R. M. (2021). Microfluidic-Generated Immunomodulatory Nanoparticles and Formulation-Dependent Effects on Lipopolysaccharide-Induced Macrophage Inflammation.
The AAPS journal,
24(1), 6.
https://doi.org/10.1208/s12248-021-00645-2
-
Li, C., Wang, Y., Zhang, S., Zhang, J., Wang, F., Sun, Y., Huang, L., & Bian, W. (2021). pH and ROS sequentially responsive podophyllotoxin prodrug micelles with surface charge-switchable and self-amplification drug release for combating multidrug resistance cancer.
Drug delivery,
28(1), 680–691.
https://doi.org/10.1080/10717544.2021.1905750
-
Cabaña-Brunod, M., Herrera, P. A., Márquez-Miranda, V., Llancalahuen, F. M., Duarte, Y., González-Nilo, D., Fuentes, J. A., Vilos, C., Velásquez, L., & Otero, C. (2021). Development of a PHBV nanoparticle as a peptide vehicle for NOD1 activation.
Drug delivery,
28(1), 1020–1030.
https://doi.org/10.1080/10717544.2021.1923862
-
Xu, M. Q., Zhong, T., Yao, X., Li, Z. Y., Li, H., Wang, J. R., Feng, Z. H., & Zhang, X. (2021). Effect of XlogP and hansen solubility parameters on the prediction of small molecule modified docetaxel, doxorubicin and irinotecan conjugates forming stable nanoparticles.
Drug delivery,
28(1), 1603–1615.
https://doi.org/10.1080/10717544.2021.1958107
-
Makhani, E. Y., Zhang, A., & Haun, J. B. (2021). Quantifying and controlling bond multivalency for advanced nanoparticle targeting to cells.
Nano convergence,
8(1), 38.
https://doi.org/10.1186/s40580-021-00288-1
-
Adimulam, T., Arumugam, T., Foolchand, A., Ghazi, T., & Chuturgoon, A. A. (2021). The Effect of Organoselenium Compounds on Histone Deacetylase Inhibition and Their Potential for Cancer Therapy.
International journal of molecular sciences,
22(23), 12952.
https://doi.org/10.3390/ijms222312952
-
Mirzaei, S., Gholami, M. H., Ang, H. L., Hashemi, F., Zarrabi, A., Zabolian, A., Hushmandi, K., Delfi, M., Khan, H., Ashrafizadeh, M., Sethi, G., & Kumar, A. P. (2021). Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy.
Cells,
10(12), 3348.
https://doi.org/10.3390/cells10123348
-
Rabha, B., Bharadwaj, K. K., Pati, S., Choudhury, B. K., Sarkar, T., Kari, Z. A., Edinur, H. A., Baishya, D., & Atanase, L. I. (2021). Development of Polymer-Based Nanoformulations for Glioblastoma Brain Cancer Therapy and Diagnosis: An Update.
Polymers,
13(23), 4114.
https://doi.org/10.3390/polym13234114
-
Lv, S., Jing, R., Liu, X., Shi, H., Shi, Y., Wang, X., Zhao, X., Cao, K., & Lv, Z. (2021). One-Step Microfluidic Fabrication of Multi-Responsive Liposomes for Targeted Delivery of Doxorubicin Synergism with Photothermal Effect.
International journal of nanomedicine,
16, 7759–7772.
https://doi.org/10.2147/IJN.S329621
-
Kaynak, A., Davis, H. W., Vallabhapurapu, S. D., Pak, K. Y., Gray, B. D., & Qi, X. (2021). SapC-DOPS as a Novel Therapeutic and Diagnostic Agent for Glioblastoma Therapy and Detection: Alternative to Old Drugs and Agents.
Pharmaceuticals (Basel, Switzerland),
14(11), 1193.
https://doi.org/10.3390/ph14111193
-
Tang, C., Liu, H., Fan, Y., He, J., Li, F., Wang, J., & Hou, Y. (2021). Functional Nanomedicines for Targeted Therapy of Bladder Cancer.
Frontiers in pharmacology,
12, 778973.
https://doi.org/10.3389/fphar.2021.778973
-
Paca, A. M., & Ajibade, P. A. (2021). Metal Sulfide Semiconductor Nanomaterials and Polymer Microgels for Biomedical Applications.
International journal of molecular sciences,
22(22), 12294.
https://doi.org/10.3390/ijms222212294
-
Fraser, B., Peters, A. E., Sutherland, J. M., Liang, M., Rebourcet, D., Nixon, B., & Aitken, R. J. (2021). Biocompatible Nanomaterials as an Emerging Technology in Reproductive Health; a Focus on the Male.
Frontiers in physiology,
12, 753686.
https://doi.org/10.3389/fphys.2021.753686
-
Chen, W., Schilperoort, M., Cao, Y., Shi, J., Tabas, I., & Tao, W. (2021). Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis.
Nature reviews. Cardiology, 1–22. Advance online publication.
https://doi.org/10.1038/s41569-021-00629-x
-
Singla, R. K., Sai, C. S., Chopra, H., Behzad, S., Bansal, H., Goyal, R., Gautam, R. K., Tsagkaris, C., Joon, S., Singla, S., & Shen, B. (2021). Natural Products for the Management of Castration-Resistant Prostate Cancer: Special Focus on Nanoparticles Based Studies.
Frontiers in cell and developmental biology,
9, 745177.
https://doi.org/10.3389/fcell.2021.745177
-
-
Li, X., Jiao, X., Li, H., & Derakhshandeh, M. (2021). Amphetamine Drug Detection with Inorganic MgO Nanotube Based on the DFT Calculations.
Applied biochemistry and biotechnology,
193(11), 3528–3539.
https://doi.org/10.1007/s12010-021-03633-6
-
Ganesan, K., Wang, Y., Gao, F., Liu, Q., Zhang, C., Li, P., Zhang, J., & Chen, J. (2021). Targeting Engineered Nanoparticles for Breast Cancer Therapy.
Pharmaceutics,
13(11), 1829.
https://doi.org/10.3390/pharmaceutics13111829
-
Xu, S., Liu, C., Zang, S., Li, J., Wang, Y., Ren, K., Li, M., Zhang, Z., & He, Q. (2021). Multifunctional self-delivery micelles targeting the invasion-metastasis cascade for enhanced chemotherapy against melanoma and the lung metastasis.
Asian journal of pharmaceutical sciences,
16(6), 794–805.
https://doi.org/10.1016/j.ajps.2021.08.002
-
Muñoz, R., Girotti, A., Hileeto, D., & Arias, F. J. (2021). Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment.
Cancers,
13(21), 5414.
https://doi.org/10.3390/cancers13215414
-
Xu, M. Q., Hao, Y. L., Wang, J. R., Li, Z. Y., Li, H., Feng, Z. H., Wang, H., Wang, J. W., & Zhang, X. (2021). Antitumor Activity of α-Linolenic Acid-Paclitaxel Conjugate Nanoparticles: In vitro and in vivo.
International journal of nanomedicine,
16, 7269–7281.
https://doi.org/10.2147/IJN.S331578
-
Rasouli, M., Fallah, N., & Bekeschus, S. (2021). Combining Nanotechnology and Gas Plasma as an Emerging Platform for Cancer Therapy: Mechanism and Therapeutic Implication.
Oxidative medicine and cellular longevity,
2021, 2990326.
https://doi.org/10.1155/2021/2990326
-
Raman, V., Van Dessel, N., Hall, C. L., Wetherby, V. E., Whitney, S. A., Kolewe, E. L., Bloom, S., Sharma, A., Hardy, J. A., Bollen, M., Van Eynde, A., & Forbes, N. S. (2021). Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases.
Nature communications,
12(1), 6116.
https://doi.org/10.1038/s41467-021-26367-9
-
Tay, Z. W., Chandrasekharan, P., Fellows, B. D., Arrizabalaga, I. R., Yu, E., Olivo, M., & Conolly, S. M. (2021). Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer.
Cancers,
13(21), 5285.
https://doi.org/10.3390/cancers13215285
-
Popova, V., Poletaeva, Y., Pyshnaya, I., Pyshnyi, D., & Dmitrienko, E. (2021). Designing pH-Dependent Systems Based on Nanoscale Calcium Carbonate for the Delivery of an Antitumor Drug.
Nanomaterials (Basel, Switzerland),
11(11), 2794.
https://doi.org/10.3390/nano11112794
-
Chen, X., Lee, S. K., Song, M., Zhang, T., Han, M. S., Chen, Y. T., Chen, Z., Ma, X., Tung, C. H., & Du, Y. N. (2021). RHAMMB-mediated bifunctional nanotherapy targeting Bcl-xL and mitochondria for pancreatic neuroendocrine tumor treatment.
Molecular therapy oncolytics,
23, 277–287.
https://doi.org/10.1016/j.omto.2021.10.002
-
Wang, H., Zheng, Y., Sun, Q., Zhang, Z., Zhao, M., Peng, C., & Shi, S. (2021). Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies.
Journal of nanobiotechnology,
19(1), 322.
https://doi.org/10.1186/s12951-021-01062-5
-
Loiseau, A., Boudon, J., Mirjolet, C., Morgand, V., & Millot, N. (2021). About the Influence of PEG Spacers on the Cytotoxicity of Titanate Nanotubes-Docetaxel Nanohybrids against a Prostate Cancer Cell Line.
Nanomaterials (Basel, Switzerland),
11(10), 2733.
https://doi.org/10.3390/nano11102733
-
Liu, G., Wang, M., He, H., & Li, J. (2021). Doxorubicin-Loaded Tumor-Targeting Peptide-Decorated Polypeptide Nanoparticles for Treating Primary Orthotopic Colon Cancer.
Frontiers in pharmacology,
12, 744811.
https://doi.org/10.3389/fphar.2021.744811
-
Mamnoon, B., Feng, L., Froberg, J., Choi, Y., Sathish, V., Taratula, O., Taratula, O., & Mallik, S. (2021). Targeting Estrogen Receptor-Positive Breast Microtumors with Endoxifen-Conjugated, Hypoxia-Sensitive Polymersomes.
ACS omega,
6(42), 27654–27667.
https://doi.org/10.1021/acsomega.1c02250
-
Manescu Paltanea, V., Paltanea, G., Antoniac, I., & Vasilescu, M. (2021). Magnetic Nanoparticles Used in Oncology.
Materials (Basel, Switzerland),
14(20), 5948.
https://doi.org/10.3390/ma14205948
-
Sano, K., Ishida, Y., Tanaka, T., Mizukami, T., Nagayama, T., Haratake, Y., Munekane, M., Yamasaki, T., & Mukai, T. (2021). Enhanced Delivery of Thermoresponsive Polymer-Based Medicine into Tumors by Using Heat Produced from Gold Nanorods Irradiated with Near-Infrared Light.
Cancers,
13(19), 5005.
https://doi.org/10.3390/cancers13195005
-
Long, K., Yang, Y., Lv, W., Jiang, K., Li, Y., Lo, A., Lam, W. C., Zhan, C., & Wang, W. (2021). Green Light-Triggered Intraocular Drug Release for Intravenous Chemotherapy of Retinoblastoma.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
8(20), e2101754.
https://doi.org/10.1002/advs.202101754
-
Wang, X., Zhang, G., Yu, D., Wang, N., & Guan, Q. (2021). The interaction of folate-modified Bletilla striata polysaccharide-based micelle with bovine serum albumin.
Glycoconjugate journal,
38(5), 585–597.
https://doi.org/10.1007/s10719-021-10022-y
-
Seo, J., Do Yoo, J., Kim, M., Shim, G., Oh, Y. K., Park, R. W., Lee, B., Kim, I. S., & Kim, S. (2021). Fibrinolytic nanocages dissolve clots in the tumor microenvironment, improving the distribution and therapeutic efficacy of anticancer drugs.
Experimental & molecular medicine,
53(10), 1592–1601.
https://doi.org/10.1038/s12276-021-00688-7
-
Ren, L., Qiu, L., Huang, B., Yin, J., Li, Y., Yang, X., & Chen, G. (2021). Preparation and Characterization of Anti-Cancer Crystal Drugs Based on Erythrocyte Membrane Nanoplatform.
Nanomaterials (Basel, Switzerland),
11(10), 2513.
https://doi.org/10.3390/nano11102513
-
Dehaghani, M. Z., Yousefi, F., Seidi, F., Bagheri, B., Mashhadzadeh, A. H., Naderi, G., Esmaeili, A., Abida, O., Habibzadeh, S., Saeb, M. R., & Rybachuk, M. (2021). Encapsulation of an anticancer drug Isatin inside a host nano-vehicle SWCNT: a molecular dynamics simulation.
Scientific reports,
11(1), 18753.
https://doi.org/10.1038/s41598-021-98222-2
-
Claridge, B., Lozano, J., Poh, Q. H., & Greening, D. W. (2021). Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities.
Frontiers in cell and developmental biology,
9, 734720.
https://doi.org/10.3389/fcell.2021.734720
-
Du, W., Gao, Y., Liu, L., Sai, S., & Ding, C. (2021). Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies.
International journal of molecular sciences,
22(18), 10104.
https://doi.org/10.3390/ijms221810104
-
Zhou, Y., Lin, B., Li, K., Zhao, Y., Sun, Z., He, C., & Jha, R. K. (2021). Preparation of Near-Infrared/Photoacoustic Dual-Mode Imaging and Photothermal/Chemo Synergistic Theranostic Nanoparticles and Their Imaging and Treating of Hepatic Carcinoma.
Frontiers in oncology,
11, 750807.
https://doi.org/10.3389/fonc.2021.750807
-
Li, K., Li, R., Zhou, B., Chen, J., Lan, K., Zhan, W., Chen, D., Zhang, T., & Li, X. (2021). Cascade Release Nanocarriers for the Triple-Negative Breast Cancer Near-Infrared Imaging and Photothermal-Chemo Synergistic Therapy.
Frontiers in oncology,
11, 747608.
https://doi.org/10.3389/fonc.2021.747608
-
Ture, N., Desai, D., & Shende, P. (2021). Polyplexes of retinoic acid: an in vitro study of complex nanostructures against colorectal cancer cell line (HCT-15).
Journal of materials science. Materials in medicine,
32(9), 122.
https://doi.org/10.1007/s10856-021-06571-1
-
Anjum, S., Hashim, M., Malik, S. A., Khan, M., Lorenzo, J. M., Abbasi, B. H., & Hano, C. (2021). Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment.
Cancers,
13(18), 4570.
https://doi.org/10.3390/cancers13184570
-
Ghaemi, F., Amiri, A., Bajuri, M. Y., Yuhana, N. Y., & Ferrara, M. (2021). Role of different types of nanomaterials against diagnosis, prevention and therapy of COVID-19.
Sustainable cities and society,
72, 103046.
https://doi.org/10.1016/j.scs.2021.103046
-
Ghose, D., Patra, C. N., Ravi Kumar, B., Swain, S., Jena, B. R., Choudhury, P., & Shree, D. (2021). QbD-based Formulation Optimization and Characterization of Polymeric Nanoparticles of Cinacalcet Hydrochloride with Improved Biopharmaceutical Attributes.
Turkish journal of pharmaceutical sciences,
18(4), 452–464.
https://doi.org/10.4274/tjps.galenos.2020.08522
-
Kumari, M., Krishnamurthy, P. T., Pinduprolu, S., & Sola, P. (2021). DR-5 and DLL-4 mAb Functionalized SLNs of Gamma-Secretase Inhibitors- An Approach for TNBC Treatment.
Advanced pharmaceutical bulletin,
11(4), 618–623.
https://doi.org/10.34172/apb.2021.070
-
Hosseinzadeh, S., Nazari, H., Esmaeili, E., & Hatamie, S. (2021). Polyethylene glycol triggers the anti-cancer impact of curcumin nanoparticles in sw-1736 thyroid cancer cells.
Journal of materials science. Materials in medicine,
32(9), 112.
https://doi.org/10.1007/s10856-021-06593-9
-
Bahrami, A., Arabestani, M. R., Taheri, M., Farmany, A., Zadeh, F. N., Hosseini, S. M., Nozari, H., & Nouri, F. (2021). Exploring the Role of Heavy Metals and Their Derivatives on the Pathophysiology of COVID-19.
Biological trace element research, 1–12. Advance online publication.
https://doi.org/10.1007/s12011-021-02893-x
-
Kim, J. H., Suh, Y. J., Park, D., Yim, H., Kim, H., Kim, H. J., Yoon, D. S., & Hwang, K. S. (2021). Technological advances in electrochemical biosensors for the detection of disease biomarkers.
Biomedical engineering letters,
11(4), 1–26. Advance online publication.
https://doi.org/10.1007/s13534-021-00204-w
-
de la Fuente, M., Lombardero, L., Gómez-González, A., Solari, C., Angulo-Barturen, I., Acera, A., Vecino, E., Astigarraga, E., & Barreda-Gómez, G. (2021). Enzyme Therapy: Current Challenges and Future Perspectives.
International journal of molecular sciences,
22(17), 9181.
https://doi.org/10.3390/ijms22179181
-
Gyanani, V., Haley, J. C., & Goswami, R. (2021). Challenges of Current Anticancer Treatment Approaches with Focus on Liposomal Drug Delivery Systems.
Pharmaceuticals (Basel, Switzerland),
14(9), 835.
https://doi.org/10.3390/ph14090835
-
Saladino, G. M., Kilic, N. I., Brodin, B., Hamawandi, B., Yazgan, I., Hertz, H. M., & Toprak, M. S. (2021). Carbon Quantum Dots Conjugated Rhodium Nanoparticles as Hybrid Multimodal Contrast Agents.
Nanomaterials (Basel, Switzerland),
11(9), 2165.
https://doi.org/10.3390/nano11092165
-
Tang, Z., Ma, Q., Chen, X., Chen, T., Ying, Y., Xi, X., Wang, L., Ma, C., Shaw, C., & Zhou, M. (2021). Recent Advances and Challenges in Nanodelivery Systems for Antimicrobial Peptides (AMPs).
Antibiotics (Basel, Switzerland),
10(8), 990.
https://doi.org/10.3390/antibiotics10080990
-
Pal, S., & Rakshit, T. (2021). Folate-Functionalized DNA Origami for Targeted Delivery of Doxorubicin to Triple-Negative Breast Cancer.
Frontiers in chemistry,
9, 721105.
https://doi.org/10.3389/fchem.2021.721105
-
Zarghami Dehaghani, M., Yousefi, F., Sajadi, S. M., Tajammal Munir, M., Abida, O., Habibzadeh, S., Mashhadzadeh, A. H., Rabiee, N., Mostafavi, E., & Saeb, M. R. (2021). Theoretical Encapsulation of Fluorouracil (5-FU) Anti-Cancer Chemotherapy Drug into Carbon Nanotubes (CNT) and Boron Nitride Nanotubes (BNNT).
Molecules (Basel, Switzerland),
26(16), 4920.
https://doi.org/10.3390/molecules26164920
-
Lin, Y. J., Wei, K. C., Chen, P. Y., Lim, M., & Hwang, T. L. (2021). Roles of Neutrophils in Glioma and Brain Metastases.
Frontiers in immunology,
12, 701383.
https://doi.org/10.3389/fimmu.2021.701383
-
Apilan, A. G., & Mothersill, C. (2021). Targeted and Non-Targeted Mechanisms for Killing Hypoxic Tumour Cells-Are There New Avenues for Treatment?.
International journal of molecular sciences,
22(16), 8651.
https://doi.org/10.3390/ijms22168651
-
Yuk, S. A., Kim, H., Abutaleb, N. S., Dieterly, A. M., Taha, M. S., Tsifansky, M. D., Lyle, L. T., Seleem, M. N., & Yeo, Y. (2021). Nanocapsules modify membrane interaction of polymyxin B to enable safe systemic therapy of Gram-negative sepsis.
Science advances,
7(32), eabj1577.
https://doi.org/10.1126/sciadv.abj1577
-
Jacoby, G., Segal Asher, M., Ehm, T., Abutbul Ionita, I., Shinar, H., Azoulay-Ginsburg, S., Zemach, I., Koren, G., Danino, D., Kozlov, M. M., Amir, R. J., & Beck, R. (2021). Order from Disorder with Intrinsically Disordered Peptide Amphiphiles.
Journal of the American Chemical Society,
143(30), 11879–11888.
https://doi.org/10.1021/jacs.1c06133
-
Gahan, C. G., Patel, S. J., Chen, L. M., Manson, D. E., Ehmer, Z. J., Blackwell, H. E., Van Lehn, R. C., & Lynn, D. M. (2021). Bacterial Quorum Sensing Signals Promote Large-Scale Remodeling of Lipid Membranes.
Langmuir : the ACS journal of surfaces and colloids,
37(30), 9120–9136.
https://doi.org/10.1021/acs.langmuir.1c01204
-
Zhang, B., Xu, Z., Zhou, W., Liu, Z., Zhao, J., & Gou, S. (2021). A light-controlled multi-step drug release nanosystem targeting tumor hypoxia for synergistic cancer therapy.
Chemical science,
12(35), 11810–11820.
https://doi.org/10.1039/d1sc01888d
-
-
-
Lôbo, G., Paiva, K., Silva, A., Simões, M. M., Radicchi, M. A., & Báo, S. N. (2021). Nanocarriers Used in Drug Delivery to Enhance Immune System in Cancer Therapy.
Pharmaceutics,
13(8), 1167.
https://doi.org/10.3390/pharmaceutics13081167
-
Tang, L., Li, J., Zhao, Q., Pan, T., Zhong, H., & Wang, W. (2021). Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery.
Pharmaceutics,
13(8), 1151.
https://doi.org/10.3390/pharmaceutics13081151
-
-
Singh, D. D., & Yadav, D. K. (2021). TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy.
Biomedicines,
9(8), 876.
https://doi.org/10.3390/biomedicines9080876
-
Yang, M., Zhao, H., Zhang, Z., Yuan, Q., Feng, Q., Duan, X., Wang, S., & Tang, Y. (2021). CO/light dual-activatable Ru(ii)-conjugated oligomer agent for lysosome-targeted multimodal cancer therapeutics.
Chemical science,
12(34), 11515–11524.
https://doi.org/10.1039/d1sc01317c
-
Ramamurthy, R., Mehta, C. H., & Nayak, U. Y. (2021). Structurally nanoengineered antimicrobial peptide polymers: design, synthesis and biomedical applications.
World journal of microbiology & biotechnology,
37(8), 139.
https://doi.org/10.1007/s11274-021-03109-z
-
Lin, J., Jin, J., Shen, Y., Zhang, L., Gong, G., Bian, H., Chen, H., Nagle, D. G., Wu, Y., Zhang, W., & Luan, X. (2021). Emerging protein degradation strategies: expanding the scope to extracellular and membrane proteins.
Theranostics,
11(17), 8337–8349.
https://doi.org/10.7150/thno.62686
-
Prajapati, R., & Somoza, Á. (2021). Albumin Nanostructures for Nucleic Acid Delivery in Cancer: Current Trend, Emerging Issues, and Possible Solutions.
Cancers,
13(14), 3454.
https://doi.org/10.3390/cancers13143454
-
Rasmi, Y., Saloua, K. S., Nemati, M., & Choi, J. R. (2021). Recent Progress in Nanotechnology for COVID-19 Prevention, Diagnostics and Treatment.
Nanomaterials (Basel, Switzerland),
11(7), 1788.
https://doi.org/10.3390/nano11071788
-
Liu, H. W., Hu, Y., Ren, Y., Nam, H., Santos, J. L., Ng, S., Gong, L., Brummet, M., Carrington, C. A., Ullman, C. G., Pomper, M. G., Minn, I., & Mao, H. Q. (2021). Scalable Purification of Plasmid DNA Nanoparticles by Tangential Flow Filtration for Systemic Delivery.
ACS applied materials & interfaces,
13(26), 30326–30336.
https://doi.org/10.1021/acsami.1c05750
-
-
Renault-Mahieux, M., Vieillard, V., Seguin, J., Espeau, P., Le, D. T., Lai-Kuen, R., Mignet, N., Paul, M., & Andrieux, K. (2021). Co-Encapsulation of Fisetin and Cisplatin into Liposomes for Glioma Therapy: From Formulation to Cell Evaluation.
Pharmaceutics,
13(7), 970.
https://doi.org/10.3390/pharmaceutics13070970
-
Moradi Kashkooli, F., Soltani, M., Momeni, M. M., & Rahmim, A. (2021). Enhanced Drug Delivery to Solid Tumors via Drug-Loaded Nanocarriers: An Image-Based Computational Framework.
Frontiers in oncology,
11, 655781.
https://doi.org/10.3389/fonc.2021.655781
-
Liu, Z., Wu, M., Lan, M., & Zhang, W. (2021). Boosting cancer therapy efficiency
via photoinduced radical production.
Chemical science,
12(27), 9500–9505.
https://doi.org/10.1039/d1sc01220g
-
Abu-Dahab, R., Mahmoud, N. N., Abdallah, M., Hamadneh, L., Hikmat, S., Zaza, R., Abuarqoub, D., & Khalil, E. A. (2021). Cytotoxicity and Cellular Death Modality of Surface-Decorated Gold Nanorods against a Panel of Breast Cancer Cell Lines.
ACS omega,
6(24), 15903–15910.
https://doi.org/10.1021/acsomega.1c01386
-
-
Musielak, M., Potoczny, J., Boś-Liedke, A., & Kozak, M. (2021). The Combination of Liposomes and Metallic Nanoparticles as Multifunctional Nanostructures in the Therapy and Medical Imaging-A Review.
International journal of molecular sciences,
22(12), 6229.
https://doi.org/10.3390/ijms22126229
-
Mitxelena-Iribarren, O., Lizarbe-Sancha, S., Campisi, J., Arana, S., & Mujika, M. (2021). Different Microfluidic Environments for In Vitro Testing of Lipid Nanoparticles against Osteosarcoma.
Bioengineering (Basel, Switzerland),
8(6), 77.
https://doi.org/10.3390/bioengineering8060077
-
Das, S., Pramanik, T., Jethwa, M., & Roy, P. (2021). Flavonoid-Decorated Nano-gold for Antimicrobial Therapy Against Gram-negative Bacteria Escherichia coli.
Applied biochemistry and biotechnology,
193(6), 1727–1743.
https://doi.org/10.1007/s12010-021-03543-7
-
Noor, N., Gani, A., Gani, A., Shah, A., & Ashraf, Z. U. (2021). Exploitation of polyphenols and proteins using nanoencapsulation for anti-viral and brain boosting properties - Evoking a synergistic strategy to combat COVID-19 pandemic.
International journal of biological macromolecules,
180, 375–384.
https://doi.org/10.1016/j.ijbiomac.2021.03.028
-
Chauhan, D. S., Dhasmana, A., Laskar, P., Prasad, R., Jain, N. K., Srivastava, R., Jaggi, M., Chauhan, S. C., & Yallapu, M. M. (2021). Nanotechnology synergized immunoengineering for cancer.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V,
163, 72–101.
https://doi.org/10.1016/j.ejpb.2021.03.010
-
Khodaei, M., Rostamizadeh, K., Taromchi, A. H., Monirinasab, H., & Fathi, M. (2021). DDAB cationic lipid-mPEG, PCL copolymer hybrid nano-carrier synthesis and application for delivery of siRNA targeting IGF-1R into breast cancer cells.
Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico,
23(6), 1167–1178.
https://doi.org/10.1007/s12094-020-02507-3
-
Sofias, A. M., Combes, F., Koschmieder, S., Storm, G., & Lammers, T. (2021). A paradigm shift in cancer nanomedicine: from traditional tumor targeting to leveraging the immune system.
Drug discovery today,
26(6), 1482–1489.
https://doi.org/10.1016/j.drudis.2021.02.017
-
Chowdhury, F., Huang, B., & Wang, N. (2021). Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine.
Cytoskeleton (Hoboken, N.J.),
78(6), 249–276.
https://doi.org/10.1002/cm.21658
-
Rui, Y., & Green, J. J. (2021). Overcoming delivery barriers in immunotherapy for glioblastoma.
Drug delivery and translational research, 1–15. Advance online publication.
https://doi.org/10.1007/s13346-021-01008-2
-
Kaladharan, K., Kumar, A., Gupta, P., Illath, K., Santra, T. S., & Tseng, F. G. (2021). Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis.
Micromachines,
12(6), 631.
https://doi.org/10.3390/mi12060631
-
Zhang, F., Zhang, Y., Kong, L., Luo, H., Zhang, Y., Mäkilä, E., Salonen, J., Hirvonen, J. T., Zhu, Y., Cheng, Y., Deng, L., Zhang, H., Kros, A., Cui, W., & Santos, H. A. (2021). Multistage signal-interactive nanoparticles improve tumor targeting through efficient nanoparticle-cell communications.
Cell reports,
35(8), 109131.
https://doi.org/10.1016/j.celrep.2021.109131
-
Liu, Y., Zhang, B., Xu, J., Wang, X., Tang, J., & Huang, J. (2021). Phase I study of liposomal irinotecan (LY01610) in patients with advanced esophageal squamous cell carcinoma.
Cancer chemotherapy and pharmacology, 1–12. Advance online publication.
https://doi.org/10.1007/s00280-021-04294-2
-
Balas, M., Popescu Din, I. M., Hermenean, A., Cinteza, L. O., & Dinischiotu, A. (2021). Exposure to Iron Oxide Nanoparticles Coated with Phospholipid-Based Polymeric Micelles Induces Renal Transitory Biochemical and Histopathological Changes in Mice.
Materials (Basel, Switzerland),
14(10), 2605.
https://doi.org/10.3390/ma14102605
-
Ho, N. T., Siggel, M., Camacho, K. V., Bhaskara, R. M., Hicks, J. M., Yao, Y. C., Zhang, Y., Köfinger, J., Hummer, G., & Noy, A. (2021). Membrane fusion and drug delivery with carbon nanotube porins.
Proceedings of the National Academy of Sciences of the United States of America,
118(19), e2016974118.
https://doi.org/10.1073/pnas.2016974118
-
Yu, G., Ali, Z., Sajjad Khan, A., Ullah, K., Jamshaid, H., Zeb, A., Imran, M., Sarwar, S., Choi, H. G., & Ud Din, F. (2021). Preparation, Pharmacokinetics, and Antitumor Potential of Miltefosine-Loaded Nanostructured Lipid Carriers.
International journal of nanomedicine,
16, 3255–3273.
https://doi.org/10.2147/IJN.S299443
-
-
Saraiva, S. M., Gutiérrez-Lovera, C., Martínez-Val, J., Lores, S., Bouzo, B. L., Díez-Villares, S., Alijas, S., Pensado-López, A., Vázquez-Ríos, A. J., Sánchez, L., & de la Fuente, M. (2021). Edelfosine nanoemulsions inhibit tumor growth of triple negative breast cancer in zebrafish xenograft model.
Scientific reports,
11(1), 9873.
https://doi.org/10.1038/s41598-021-87968-4
-
Moin, A., Rizvi, S., Hussain, T., Gowda, D. V., Subaiea, G. M., Elsayed, M., Ansari, M., Alanazi, A. S., & Yadav, H. (2021). Current Status of Brain Tumor in the Kingdom of Saudi Arabia and Application of Nanobiotechnology for Its Treatment: A Comprehensive Review.
Life (Basel, Switzerland),
11(5), 421.
https://doi.org/10.3390/life11050421
-
Vásárhelyi, L., Hegedűs, T., Sáringer, S., Ballai, G., Szilágyi, I., & Kónya, Z. (2021). Stability of Boron Nitride Nanosphere Dispersions in the Presence of Polyelectrolytes.
Langmuir : the ACS journal of surfaces and colloids,
37(17), 5399–5407.
https://doi.org/10.1021/acs.langmuir.1c00656
-
Ma, S., Xu, Y., & Song, W. (2021). Functional bionanomaterials for cell surface engineering in cancer immunotherapy.
APL bioengineering,
5(2), 021506.
https://doi.org/10.1063/5.0045945
-
Gao, P., Chang, X., Zhang, D., Cai, Y., Chen, G., Wang, H., & Wang, T. (2021). Synergistic integration of metal nanoclusters and biomolecules as hybrid systems for therapeutic applications.
Acta pharmaceutica Sinica. B,
11(5), 1175–1199.
https://doi.org/10.1016/j.apsb.2020.12.004
-
Naidu, E., Olojede, S. O., Lawal, S. K., Rennie, C. O., & Azu, O. O. (2021). Nanoparticle delivery system, highly active antiretroviral therapy, and testicular morphology: The role of stereology.
Pharmacology research & perspectives,
9(3), e00776.
https://doi.org/10.1002/prp2.776
-
Xu, Y., Guo, Y., Chen, L., Ni, D., Hu, P., & Shi, J. (2021). Tumor chemical suffocation therapy by dual respiratory inhibitions.
Chemical science,
12(22), 7763–7769.
https://doi.org/10.1039/d1sc00929j
-
Liao, S., Yue, W., Cai, S., Tang, Q., Lu, W., Huang, L., Qi, T., & Liao, J. (2021). Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective.
Frontiers in pharmacology,
12, 664123.
https://doi.org/10.3389/fphar.2021.664123
-
Li, D., Gao, C., Kuang, M., Xu, M., Wang, B., Luo, Y., Teng, L., & Xie, J. (2021). Nanoparticles as Drug Delivery Systems of RNAi in Cancer Therapy.
Molecules (Basel, Switzerland),
26(8), 2380.
https://doi.org/10.3390/molecules26082380
-
Lopes, R., Shi, K., Fonseca, N. A., Gama, A., Ramalho, J. S., Almeida, L., Moura, V., Simões, S., Tidor, B., & Moreira, J. N. (2021). Modelling the impact of nucleolin expression level on the activity of F3 peptide-targeted pH-sensitive pegylated liposomes containing doxorubicin.
Drug delivery and translational research, 10.1007/s13346-021-00972-z. Advance online publication.
https://doi.org/10.1007/s13346-021-00972-z
-
Van Gheluwe, L., Chourpa, I., Gaigne, C., & Munnier, E. (2021). Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness.
Polymers,
13(8), 1285.
https://doi.org/10.3390/polym13081285
-
Shahabadi, N., Zendehcheshm, S., & Khademi, F. (2021). Selenium nanoparticles: Synthesis,
in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins.
Biotechnology reports (Amsterdam, Netherlands),
30, e00615.
https://doi.org/10.1016/j.btre.2021.e00615
-
Mahmoud, B. S., & McConville, C. (2021). Development and Optimization of Irinotecan-Loaded PCL Nanoparticles and Their Cytotoxicity against Primary High-Grade Glioma Cells.
Pharmaceutics,
13(4), 541.
https://doi.org/10.3390/pharmaceutics13040541
-
Zhang, J. N., Xia, Y. X., & Zhang, H. J. (2021). Natural Cyclopeptides as Anticancer Agents in the Last 20 Years.
International journal of molecular sciences,
22(8), 3973.
https://doi.org/10.3390/ijms22083973
-
Wang, T., Suita, Y., Miriyala, S., Dean, J., Tapinos, N., & Shen, J. (2021). Advances in Lipid-Based Nanoparticles for Cancer Chemoimmunotherapy.
Pharmaceutics,
13(4), 520.
https://doi.org/10.3390/pharmaceutics13040520
-
Wang, S., Yu, G., Yang, W., Wang, Z., Jacobson, O., Tian, R., Deng, H., Lin, L., & Chen, X. (2021). Photodynamic-Chemodynamic Cascade Reactions for Efficient Drug Delivery and Enhanced Combination Therapy.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
8(10), 2002927.
https://doi.org/10.1002/advs.202002927
-
Motiei, M., Pleno de Gouveia, L., Šopík, T., Vícha, R., Škoda, D., Císař, J., Khalili, R., Domincová Bergerová, E., Münster, L., Fei, H., Sedlařík, V., & Sáha, P. (2021). Nanoparticle-Based Rifampicin Delivery System Development.
Molecules (Basel, Switzerland),
26(7), 2067.
https://doi.org/10.3390/molecules26072067
-
Jia, H., Neptune, E., & Cui, H. (2021). Targeting ACE2 for COVID-19 Therapy: Opportunities and Challenges.
American journal of respiratory cell and molecular biology,
64(4), 416–425.
https://doi.org/10.1165/rcmb.2020-0322PS
-
Liu, X., Jiang, J., Chang, C. H., Liao, Y. P., Lodico, J. J., Tang, I., Zheng, E., Qiu, W., Lin, M., Wang, X., Ji, Y., Mei, K. C., Nel, A. E., & Meng, H. (2021). Development of Facile and Versatile Platinum Drug Delivering Silicasome Nanocarriers for Efficient Pancreatic Cancer Chemo-Immunotherapy.
Small (Weinheim an der Bergstrasse, Germany),
17(14), e2005993.
https://doi.org/10.1002/smll.202005993
-
Yang, Z., Zhang, L., Zhu, H., Zhou, K., Wang, H., Wang, Y., Su, R., Guo, D., Zhou, L., Xu, X., Song, P., Zheng, S., & Xie, H. (2021). Nanoparticle formulation of mycophenolate mofetil achieves enhanced efficacy against hepatocellular carcinoma by targeting tumour-associated fibroblast.
Journal of cellular and molecular medicine,
25(7), 3511–3523.
https://doi.org/10.1111/jcmm.16434
-
Wang, Y., Wang, J., Zhu, D., Wang, Y., Qing, G., Zhang, Y., Liu, X., & Liang, X. J. (2021). Effect of physicochemical properties on
in vivo fate of nanoparticle-based cancer immunotherapies.
Acta pharmaceutica Sinica. B,
11(4), 886–902.
https://doi.org/10.1016/j.apsb.2021.03.007
-
Zhang, M., Hagan, C. T., 4th, Foley, H., Tian, X., Yang, F., Au, K. M., Mi, Y., Medik, Y., Roche, K., Wagner, K., Rodgers, Z., Min, Y., & Wang, A. Z. (2021). Co-delivery of etoposide and cisplatin in dual-drug loaded nanoparticles synergistically improves chemoradiotherapy in non-small cell lung cancer models.
Acta biomaterialia,
124, 327–335.
https://doi.org/10.1016/j.actbio.2021.02.001
-
Radmanesh, F., Sadeghi Abandansari, H., Ghanian, M. H., Pahlavan, S., Varzideh, F., Yakhkeshi, S., Alikhani, M., Moradi, S., Braun, T., & Baharvand, H. (2021). Hydrogel-mediated delivery of microRNA-92a inhibitor polyplex nanoparticles induces localized angiogenesis.
Angiogenesis, 10.1007/s10456-021-09778-6. Advance online publication.
https://doi.org/10.1007/s10456-021-09778-6
-
Tchounwou, P. B., Dasari, S., Noubissi, F. K., Ray, P., & Kumar, S. (2021). Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy.
Journal of experimental pharmacology,
13, 303–328.
https://doi.org/10.2147/JEP.S267383
-
Zhao, Y., He, Z., Zhang, Q., Wang, J., Jia, W., Jin, L., Zhao, L., & Lu, Y. (2021). 880 nm NIR-Triggered Organic Small Molecular-Based Nanoparticles for Photothermal Therapy of Tumor.
Nanomaterials (Basel, Switzerland),
11(3), 773.
https://doi.org/10.3390/nano11030773
-
Zhao, P., Qiu, L., Zhou, S., Li, L., Qian, Z., & Zhang, H. (2021). Cancer Cell Membrane Camouflaged Mesoporous Silica Nanoparticles Combined with Immune Checkpoint Blockade for Regulating Tumor Microenvironment and Enhancing Antitumor Therapy.
International journal of nanomedicine,
16, 2107–2121.
https://doi.org/10.2147/IJN.S295565
-
Borlan, R., Focsan, M., Maniu, D., & Astilean, S. (2021). Interventional NIR Fluorescence Imaging of Cancer: Review on Next Generation of Dye-Loaded Protein-Based Nanoparticles for Real-Time Feedback During Cancer Surgery.
International journal of nanomedicine,
16, 2147–2171.
https://doi.org/10.2147/IJN.S295234
-
Hingorani, D. V., Camargo, M. F., Quraishi, M. A., Adams, S. R., & Advani, S. J. (2021). Tumor Activated Cell Penetrating Peptides to Selectively Deliver Immune Modulatory Drugs.
Pharmaceutics,
13(3), 365.
https://doi.org/10.3390/pharmaceutics13030365
-
Luo, G., Zhang, J., Sun, Y., Wang, Y., Wang, H., Cheng, B., Shu, Q., & Fang, X. (2021). Nanoplatforms for Sepsis Management: Rapid Detection/Warning, Pathogen Elimination and Restoring Immune Homeostasis.
Nano-micro letters,
13, 88.
https://doi.org/10.1007/s40820-021-00598-3
-
Jiang, Q., Liu, L., Li, Q., Cao, Y., Chen, D., Du, Q., Yang, X., Huang, D., Pei, R., Chen, X., & Huang, G. (2021). NIR-laser-triggered gadolinium-doped carbon dots for magnetic resonance imaging, drug delivery and combined photothermal chemotherapy for triple negative breast cancer.
Journal of nanobiotechnology,
19(1), 64.
https://doi.org/10.1186/s12951-021-00811-w
-
Rodell, C. B., Baldwin, P., Fernandez, B., Weissleder, R., Sridhar, S., & Dubach, J. M. (2021). Quantification of Cellular Drug Biodistribution Addresses Challenges in Evaluating
in vitro and
in vivo Encapsulated Drug Delivery.
Advanced therapeutics,
4(3), 2000125.
https://doi.org/10.1002/adtp.202000125
-
Tsai, L. H., Yen, C. H., Hsieh, H. Y., & Young, T. H. (2021). Doxorubicin Loaded PLGA Nanoparticle with Cationic/Anionic Polyelectrolyte Decoration: Characterization, and Its Therapeutic Potency.
Polymers,
13(5), 693.
https://doi.org/10.3390/polym13050693
-
Nabil, G., Alzhrani, R., Alsaab, H. O., Atef, M., Sau, S., Iyer, A. K., & Banna, H. E. (2021). CD44 Targeted Nanomaterials for Treatment of Triple-Negative Breast Cancer.
Cancers,
13(4), 898.
https://doi.org/10.3390/cancers13040898
-
Pritchard, N., Kaitu'u-Lino, T., Harris, L., Tong, S., & Hannan, N. (2021). Nanoparticles in pregnancy: the next frontier in reproductive therapeutics.
Human reproduction update,
27(2), 280–304.
https://doi.org/10.1093/humupd/dmaa049
-
Khan, A. A., & T M de Rosales, R. (2021). Radiolabelling of Extracellular Vesicles for PET and SPECT imaging.
Nanotheranostics,
5(3), 256–274.
https://doi.org/10.7150/ntno.51676
-
Izci, M., Maksoudian, C., Manshian, B. B., & Soenen, S. J. (2021). The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors.
Chemical reviews,
121(3), 1746–1803.
https://doi.org/10.1021/acs.chemrev.0c00779
-
Jiang, Y., Huang, J., Xu, C., & Pu, K. (2021). Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer.
Nature communications,
12(1), 742.
https://doi.org/10.1038/s41467-021-21047-0
-
Thambiraj, S., Vijayalakshmi, R., & Ravi Shankaran, D. (2021). An effective strategy for development of docetaxel encapsulated gold nanoformulations for treatment of prostate cancer.
Scientific reports,
11(1), 2808.
https://doi.org/10.1038/s41598-020-80529-1
-
Aramini, B., Masciale, V., Grisendi, G., Banchelli, F., D'Amico, R., Maiorana, A., Morandi, U., Dominici, M., & Haider, K. H. (2021). Cancer stem cells and macrophages: molecular connections and future perspectives against cancer.
Oncotarget,
12(3), 230–250.
https://doi.org/10.18632/oncotarget.27870
-
-
Shinn, J., Lee, S., Lee, H. K., Ahn, J., Lee, S. A., Lee, S., & Lee, Y. (2021). Recent progress in development and applications of second near-infrared (NIR-II) nanoprobes.
Archives of pharmacal research,
44(2), 165–181.
https://doi.org/10.1007/s12272-021-01313-x
-
Kurzątkowska, K., Pazos, M. A., 2nd, Herschkowitz, J. I., & Hepel, M. (2021). Cancer-Targeted Controlled Delivery of Chemotherapeutic Anthracycline Derivatives Using Apoferritin Nanocage Carriers.
International journal of molecular sciences,
22(3), 1362.
https://doi.org/10.3390/ijms22031362
-
Khan, A., Dias, F., Neekhra, S., Singh, B., & Srivastava, R. (2021). Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranostics.
Frontiers in chemistry,
8, 631351.
https://doi.org/10.3389/fchem.2020.631351
-
Zhou, X., Liu, X., & Huang, L. (2021). Macrophage-Mediated Tumor Cell Phagocytosis: Opportunity for Nanomedicine Intervention.
Advanced functional materials,
31(5), 2006220.
https://doi.org/10.1002/adfm.202006220
-
Kanduč, M., Kim, W. K., Roa, R., & Dzubiella, J. (2021). How the Shape and Chemistry of Molecular Penetrants Control Responsive Hydrogel Permeability.
ACS nano,
15(1), 614–624.
https://doi.org/10.1021/acsnano.0c06319
-
Jahan, S., Karim, M. E., & Chowdhury, E. H. (2021). Nanoparticles Targeting Receptors on Breast Cancer for Efficient Delivery of Chemotherapeutics.
Biomedicines,
9(2), 114.
https://doi.org/10.3390/biomedicines9020114
-
-
-
-
Fakih, H. H., Katolik, A., Malek-Adamian, E., Fakhoury, J. J., Kaviani, S., Damha, M. J., & Sleiman, H. F. (2021). Design and enhanced gene silencing activity of spherical 2'-fluoroarabinose nucleic acids (FANA-SNAs).
Chemical science,
12(8), 2993–3003.
https://doi.org/10.1039/d0sc06645a
-
Andrade-Gagnon, B., Bélanger-Bouliga, M., Trang Nguyen, P., Nguyen, T., Bourgault, S., & Nazemi, A. (2021). Degradable Spirocyclic Polyacetal-Based Core-Amphiphilic Assemblies for Encapsulation and Release of Hydrophobic Cargo.
Nanomaterials (Basel, Switzerland),
11(1), 161.
https://doi.org/10.3390/nano11010161
-
Albalawi, F., Hussein, M. Z., Fakurazi, S., & Masarudin, M. J. (2021). Engineered Nanomaterials: The Challenges and Opportunities for Nanomedicines.
International journal of nanomedicine,
16, 161–184.
https://doi.org/10.2147/IJN.S288236
-
Wang, P., Yan, G., Zhu, X., Du, Y., Chen, D., & Zhang, J. (2021). Heterofullerene MC59 (M = B, Si, Al) as Potential Carriers for Hydroxyurea Drug Delivery.
Nanomaterials (Basel, Switzerland),
11(1), 115.
https://doi.org/10.3390/nano11010115
-
Zhang, L., Mu, C., Zhang, T., Yang, D., Wang, C., Chen, Q., Tang, L., Fan, L., Liu, C., Shen, J., & Li, H. (2021). Development of targeted therapy therapeutics to sensitize triple-negative breast cancer chemosensitivity utilizing bacteriophage phi29 derived packaging RNA.
Journal of nanobiotechnology,
19(1), 13.
https://doi.org/10.1186/s12951-020-00758-4
-
El-Sahli, S., Hua, K., Sulaiman, A., Chambers, J., Li, L., Farah, E., McGarry, S., Liu, D., Zheng, P., Lee, S. H., Cui, J., Ekker, M., Côté, M., Alain, T., Li, X., D'Costa, V. M., Wang, L., & Gadde, S. (2021). A triple-drug nanotherapy to target breast cancer cells, cancer stem cells, and tumor vasculature.
Cell death & disease,
12(1), 8.
https://doi.org/10.1038/s41419-020-03308-w
-
Gregoriou, Y., Gregoriou, G., Yilmaz, V., Kapnisis, K., Prokopi, M., Anayiotos, A., Strati, K., Dietis, N., Constantinou, A. I., & Andreou, C. (2021). Resveratrol loaded polymeric micelles for theranostic targeting of breast cancer cells.
Nanotheranostics,
5(1), 113–124.
https://doi.org/10.7150/ntno.51955
-
-
-
Li, M., Qin, M., Song, G., Deng, H., Wang, D., Wang, X., Dai, W., He, B., Zhang, H., & Zhang, Q. (2021). A biomimetic antitumor nanovaccine based on biocompatible calcium pyrophosphate and tumor cell membrane antigens.
Asian journal of pharmaceutical sciences,
16(1), 97–109.
https://doi.org/10.1016/j.ajps.2020.06.006
-
-
Saw, P. E., Xu, X., Kang, B. R., Lee, J., Lee, Y. S., Kim, C., Kim, H., Kang, S. H., Na, Y. J., Moon, H. J., Kim, J. H., Park, Y. K., Yoon, W., Kim, J. H., Kwon, T. H., Choi, C., Jon, S., & Chong, K. (2021). Extra-domain B of fibronectin as an alternative target for drug delivery and a cancer diagnostic and prognostic biomarker for malignant glioma.
Theranostics,
11(2), 941–957.
https://doi.org/10.7150/thno.44948
-
Meng, B., Strawbridge, R. R., Tichauer, K., Samkoe, K. S., & Davis, S. C. (2021). Monitoring cancer cell surface receptor expression during anti-angiogenesis therapy in vivo. Proceedings of SPIE--the International Society for Optical Engineering, 11625, 116250Q.
-
Decuzzi, P., Peer, D., Mascolo, D. D., Palange, A. L., Manghnani, P. N., Moghimi, S. M., Farhangrazi, Z. S., Howard, K. A., Rosenblum, D., Liang, T., Chen, Z., Wang, Z., Zhu, J. J., Gu, Z., Korin, N., Letourneur, D., Chauvierre, C., van der Meel, R., Kiessling, F., & Lammers, T. (2021). Roadmap on nanomedicine.
Nanotechnology,
32(1), 012001.
https://doi.org/10.1088/1361-6528/abaadb
-
Beyaz, H., Uludag, H., Kavaz, D., & Rizaner, N. (2021). Mechanisms of Drug Resistance and Use of Nanoparticle Delivery to Overcome Resistance in Breast Cancers.
Advances in experimental medicine and biology,
1347, 163–181.
https://doi.org/10.1007/5584_2021_648
-
Tawfik, S. M., Azizov, S., Elmasry, M. R., Sharipov, M., & Lee, Y. I. (2020). Recent Advances in Nanomicelles Delivery Systems.
Nanomaterials (Basel, Switzerland),
11(1), 70.
https://doi.org/10.3390/nano11010070
-
Volpi, S., Cancelli, U., Neri, M., & Corradini, R. (2020). Multifunctional Delivery Systems for Peptide Nucleic Acids.
Pharmaceuticals (Basel, Switzerland),
14(1), 14.
https://doi.org/10.3390/ph14010014
-
Ros, C., Bieri, J., & Leisi, R. (2020). The VP1u of Human Parvovirus B19: A Multifunctional Capsid Protein with Biotechnological Applications.
Viruses,
12(12), 1463.
https://doi.org/10.3390/v12121463
-
Kvetkina, A., Malyarenko, O., Pavlenko, A., Dyshlovoy, S., von Amsberg, G., Ermakova, S., & Leychenko, E. (2020). Sea Anemone
Heteractis crispa Actinoporin Demonstrates In Vitro Anticancer Activities and Prevents HT-29 Colorectal Cancer Cell Migration.
Molecules (Basel, Switzerland),
25(24), 5979.
https://doi.org/10.3390/molecules25245979
-
Juszkiewicz, K., Sikorski, A. F., & Czogalla, A. (2020). Building Blocks to Design Liposomal Delivery Systems.
International journal of molecular sciences,
21(24), 9559.
https://doi.org/10.3390/ijms21249559
-
Mamidi, N., Velasco Delgadillo, R. M., Gonzáles Ortiz, A., & Barrera, E. V. (2020). Carbon Nano-Onions Reinforced Multilayered Thin Film System for Stimuli-Responsive Drug Release.
Pharmaceutics,
12(12), 1208.
https://doi.org/10.3390/pharmaceutics12121208
-
Skibba, M., Drelich, A., Poellmann, M., Hong, S., & Brasier, A. R. (2020). Nanoapproaches to Modifying Epigenetics of Epithelial Mesenchymal Transition for Treatment of Pulmonary Fibrosis.
Frontiers in pharmacology,
11, 607689.
https://doi.org/10.3389/fphar.2020.607689
-
Aliyandi, A., Zuhorn, I. S., & Salvati, A. (2020). Disentangling Biomolecular Corona Interactions With Cell Receptors and Implications for Targeting of Nanomedicines.
Frontiers in bioengineering and biotechnology,
8, 599454.
https://doi.org/10.3389/fbioe.2020.599454
-
Biancacci, I., Sun, Q., Möckel, D., Gremse, F., Rosenhain, S., Kiessling, F., Bartneck, M., Hu, Q., Thewissen, M., Storm, G., Hennink, W. E., Shi, Y., Rijcken, C., Lammers, T., & Sofias, A. M. (2020). Optical imaging of the whole-body to cellular biodistribution of clinical-stage PEG-b-pHPMA-based core-crosslinked polymeric micelles.
Journal of controlled release : official journal of the Controlled Release Society,
328, 805–816.
https://doi.org/10.1016/j.jconrel.2020.09.046
-
Jacob, E. M., Borah, A., Pillai, S. C., & Kumar, D. S. (2020). Inflammatory Bowel Disease: The Emergence of New Trends in Lifestyle and Nanomedicine as the Modern Tool for Pharmacotherapy.
Nanomaterials (Basel, Switzerland),
10(12), 2460.
https://doi.org/10.3390/nano10122460
-
-
Zeb, A., Rana, I., Choi, H. I., Lee, C. H., Baek, S. W., Lim, C. W., Khan, N., Arif, S. T., Sahar, N. U., Alvi, A. M., Shah, F. A., Din, F. U., Bae, O. N., Park, J. S., & Kim, J. K. (2020). Potential and Applications of Nanocarriers for Efficient Delivery of Biopharmaceuticals.
Pharmaceutics,
12(12), 1184.
https://doi.org/10.3390/pharmaceutics12121184
-
Kakwere, H., Ingham, E. S., Tumbale, S. K., & Ferrara, K. W. (2020). Gemcitabine-retinoid prodrug loaded nanoparticles display in vitro antitumor efficacy towards drug-resilient human PANC-1 pancreatic cancer cells.
Materials science & engineering. C, Materials for biological applications,
117, 111251.
https://doi.org/10.1016/j.msec.2020.111251
-
-
Zhou, Y., Que, K. T., Tang, H. M., Zhang, P., Fu, Q. M., & Liu, Z. J. (2020). Anti-CD206 antibody-conjugated Fe3O4-based PLGA nanoparticles selectively promote tumor-associated macrophages to polarize to the pro-inflammatory subtype.
Oncology letters,
20(6), 298.
https://doi.org/10.3892/ol.2020.12161
-
Barkovskaya, A., Buffone, A., Jr, Žídek, M., & Weaver, V. M. (2020). Proteoglycans as Mediators of Cancer Tissue Mechanics.
Frontiers in cell and developmental biology,
8, 569377.
https://doi.org/10.3389/fcell.2020.569377
-
Mediratta, K., El-Sahli, S., D'Costa, V., & Wang, L. (2020). Current Progresses and Challenges of Immunotherapy in Triple-Negative Breast Cancer.
Cancers,
12(12), 3529.
https://doi.org/10.3390/cancers12123529
-
Zhou, Y., Sun, X., Zhou, L., & Zhang, X. (2020). pH-Sensitive and Long-Circulation Nanoparticles for Near-Infrared Fluorescence Imaging-Monitored and Chemo-Photothermal Synergistic Treatment Against Gastric Cancer.
Frontiers in pharmacology,
11, 610883.
https://doi.org/10.3389/fphar.2020.610883
-
Jin, Y., Wang, Y., Liu, X., Zhou, J., Wang, X., Feng, H., & Liu, H. (2020). Synergistic Combination Chemotherapy of Lung Cancer: Cisplatin and Doxorubicin Conjugated Prodrug Loaded, Glutathione and pH Sensitive Nanocarriers.
Drug design, development and therapy,
14, 5205–5215.
https://doi.org/10.2147/DDDT.S260253
-
Wang, X., Qiu, Y., Wang, M., Zhang, C., Zhang, T., Zhou, H., Zhao, W., Zhao, W., Xia, G., & Shao, R. (2020). Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy.
International journal of nanomedicine,
15, 9447–9467.
https://doi.org/10.2147/IJN.S274289
-
Yoo, J. D., Bae, S. M., Seo, J., Jeon, I. S., Vadevoo, S., Kim, S. Y., Kim, I. S., Lee, B., & Kim, S. (2020). Designed ferritin nanocages displaying trimeric TRAIL and tumor-targeting peptides confer superior anti-tumor efficacy.
Scientific reports,
10(1), 19997.
https://doi.org/10.1038/s41598-020-77095-x
-
-
Coclite, A., Coclite, G. M., & De Tommasi, D. (2020). Capsules Rheology in Carreau-Yasuda Fluids.
Nanomaterials (Basel, Switzerland),
10(11), 2190.
https://doi.org/10.3390/nano10112190
-
Alqahtani, M. S., Syed, R., & Alshehri, M. (2020). Size-Dependent Phagocytic Uptake and Immunogenicity of Gliadin Nanoparticles.
Polymers,
12(11), 2576.
https://doi.org/10.3390/polym12112576
-
Li, X., Lovell, J. F., Yoon, J., & Chen, X. (2020). Clinical development and potential of photothermal and photodynamic therapies for cancer.
Nature reviews. Clinical oncology,
17(11), 657–674.
https://doi.org/10.1038/s41571-020-0410-2
-
Rehman, F. U., Al-Waeel, M., Naz, S. S., & Shah, K. U. (2020). Anticancer therapeutics: a brief account on wide refinements. American journal of cancer research, 10(11), 3599–3621.
-
Zhu, Y., Yu, X., Thamphiwatana, S. D., Zheng, Y., & Pang, Z. (2020). Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy.
Acta pharmaceutica Sinica. B,
10(11), 2054–2074.
https://doi.org/10.1016/j.apsb.2020.08.010
-
Xie, M., Xu, Y., Huang, J., Li, Y., Wang, L., Yang, L., & Mao, H. (2020). Going even smaller: Engineering sub-5 nm nanoparticles for improved delivery, biocompatibility, and functionality.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology,
12(6), e1644.
https://doi.org/10.1002/wnan.1644
-
Gaspar, R., Coelho, F., & Silva, B. (2020). Lipid-Nucleic Acid Complexes: Physicochemical Aspects and Prospects for Cancer Treatment.
Molecules (Basel, Switzerland),
25(21), 5006.
https://doi.org/10.3390/molecules25215006
-
Clement, S., Campbell, J. M., Deng, W., Guller, A., Nisar, S., Liu, G., Wilson, B. C., & Goldys, E. M. (2020). Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
7(24), 2003584.
https://doi.org/10.1002/advs.202003584
-
Liang, Z., Li, J., & Zhu, B. (2020). Lung Cancer Combination Treatment: Evaluation of the Synergistic Effect of Cisplatin Prodrug, Vinorelbine and Retinoic Acid When Co-Encapsulated in a Multi-Layered Nano-Platform.
Drug design, development and therapy,
14, 4519–4531.
https://doi.org/10.2147/DDDT.S251749
-
Redolfi Riva, E., Sinibaldi, E., Grillone, A. F., Del Turco, S., Mondini, A., Li, T., Takeoka, S., & Mattoli, V. (2020). Enhanced In Vitro Magnetic Cell Targeting of Doxorubicin-Loaded Magnetic Liposomes for Localized Cancer Therapy.
Nanomaterials (Basel, Switzerland),
10(11), 2104.
https://doi.org/10.3390/nano10112104
-
Martin, B., Seguin, J., Annereau, M., Fleury, T., Lai-Kuen, R., Neri, G., Lam, A., Bally, M., Mignet, N., & Corvis, Y. (2020). Preparation of parenteral nanocrystal suspensions of etoposide from the excipient free dry state of the drug to enhance in vivo antitumoral properties.
Scientific reports,
10(1), 18059.
https://doi.org/10.1038/s41598-020-74809-z
-
Hassani, A., Azarian, M., Ibrahim, W. N., & Hussain, S. A. (2020). Preparation, characterization and therapeutic properties of gum arabic-stabilized gallic acid nanoparticles.
Scientific reports,
10(1), 17808.
https://doi.org/10.1038/s41598-020-71175-8
-
Jiang, B., Zhou, L., Lu, J., Wang, Y., Liu, C., You, L., & Guo, J. (2020). Stroma-Targeting Therapy in Pancreatic Cancer: One Coin With Two Sides?.
Frontiers in oncology,
10, 576399.
https://doi.org/10.3389/fonc.2020.576399
-
Wonder, E. A., Ewert, K. K., Liu, C., Steffes, V. M., Kwak, J., Qahar, V., Majzoub, R. N., Zhang, Z., Carragher, B., Potter, C. S., Li, Y., Qiao, W., & Safinya, C. R. (2020). Assembly of Building Blocks by Double-End-Anchored Polymers in the Dilute Regime Mediated by Hydrophobic Interactions at Controlled Distances.
ACS applied materials & interfaces,
12(41), 45728–45743.
https://doi.org/10.1021/acsami.0c10972
-
Eckmann, D. M., Bradley, R. P., Kandy, S. K., Patil, K., Janmey, P. A., & Radhakrishnan, R. (2020). Multiscale modeling of protein membrane interactions for nanoparticle targeting in drug delivery.
Current opinion in structural biology,
64, 104–110.
https://doi.org/10.1016/j.sbi.2020.06.023
-
Scherger, M., Bolli, E., Antunes, A., Arnouk, S., Stickdorn, J., Van Driessche, A., Schild, H., Grabbe, S., De Geest, B. G., Van Ginderachter, J. A., & Nuhn, L. (2020). Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels.
Cells,
9(10), 2222.
https://doi.org/10.3390/cells9102222
-
Wang, S., Duan, Y., Zhang, Q., Komarla, A., Gong, H., Gao, W., & Zhang, L. (2020). Drug Targeting
via Platelet Membrane-Coated Nanoparticles.
Small structures,
1(1), 2000018.
https://doi.org/10.1002/sstr.202000018
-
Hattab, D., & Bakhtiar, A. (2020). Bioengineered siRNA-Based Nanoplatforms Targeting Molecular Signaling Pathways for the Treatment of Triple Negative Breast Cancer: Preclinical and Clinical Advancements.
Pharmaceutics,
12(10), 929.
https://doi.org/10.3390/pharmaceutics12100929
-
-
Wu, C., Wu, K. J., Liu, J. B., Wang, W., Leung, C. H., & Ma, D. L. (2020). Structure-guided discovery of a luminescent theranostic toolkit for living cancer cells and the imaging behavior effect.
Chemical science,
11(42), 11404–11412.
https://doi.org/10.1039/d0sc04576d
-
Mohanty, A., Uthaman, S., & Park, I. K. (2020). Utilization of Polymer-Lipid Hybrid Nanoparticles for Targeted Anti-Cancer Therapy.
Molecules (Basel, Switzerland),
25(19), 4377.
https://doi.org/10.3390/molecules25194377
-
González-Larraza, P. G., López-Goerne, T. M., Padilla-Godínez, F. J., González-López, M. A., Hamdan-Partida, A., & Gómez, E. (2020). IC50 Evaluation of Platinum Nanocatalysts for Cancer Treatment in Fibroblast, HeLa, and DU-145 Cell Lines.
ACS omega,
5(39), 25381–25389.
https://doi.org/10.1021/acsomega.0c03759
-
Gurunathan, S., Jeyaraj, M., Kang, M. H., & Kim, J. H. (2020). Anticancer Properties of Platinum Nanoparticles and Retinoic Acid: Combination Therapy for the Treatment of Human Neuroblastoma Cancer.
International journal of molecular sciences,
21(18), 6792.
https://doi.org/10.3390/ijms21186792
-
Yu, W. J., Huang, D. X., Liu, S., Sha, Y. L., Gao, F. H., & Liu, H. (2020). Polymeric Nanoscale Drug Carriers Mediate the Delivery of Methotrexate for Developing Therapeutic Interventions Against Cancer and Rheumatoid Arthritis.
Frontiers in oncology,
10, 1734.
https://doi.org/10.3389/fonc.2020.01734
-
Xia, J., Xue, Y., Lei, B., Xu, L., Sun, M., Li, N., Zhao, H., Wang, M., Luo, M., Zhang, C., Huang, B., Du, Y., & Yan, C. H. (2020). Multimodal channel cancer chemotherapy by 2D functional gadolinium metal-organic framework.
National science review,
8(7), nwaa221.
https://doi.org/10.1093/nsr/nwaa221
-
Fuchs, N., Meta, M., Schuppan, D., Nuhn, L., & Schirmeister, T. (2020). Novel Opportunities for Cathepsin S Inhibitors in Cancer Immunotherapy by Nanocarrier-Mediated Delivery.
Cells,
9(9), 2021.
https://doi.org/10.3390/cells9092021
-
Day, R. A., Estabrook, D. A., Wu, C., Chapman, J. O., Togle, A. J., & Sletten, E. M. (2020). Systematic Study of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles.
ACS applied materials & interfaces,
12(35), 38887–38898.
https://doi.org/10.1021/acsami.0c07206
-
Selvaraja, V. K., & Gudipudi, D. K. (2020). Fundamentals to clinical application of nanoparticles in cancer immunotherapy and radiotherapy.
Ecancermedicalscience,
14, 1095.
https://doi.org/10.3332/ecancer.2020.1095
-
Davis, H. W., Vallabhapurapu, S. D., Chu, Z., Wyder, M. A., Greis, K. D., Fannin, V., Sun, Y., Desai, P. B., Pak, K. Y., Gray, B. D., & Qi, X. (2020). Biotherapy of Brain Tumors with Phosphatidylserine-Targeted Radioiodinated SapC-DOPS Nanovesicles.
Cells,
9(9), 1960.
https://doi.org/10.3390/cells9091960
-
Liu, Y., van Steenbergen, M. J., Zhong, Z., Oliveira, S., Hennink, W. E., & van Nostrum, C. F. (2020). Dithiolane-Crosslinked Poly(ε-caprolactone)-Based Micelles: Impact of Monomer Sequence, Nature of Monomer, and Reducing Agent on the Dynamic Crosslinking Properties.
Macromolecules,
53(16), 7009–7024.
https://doi.org/10.1021/acs.macromol.0c01031
-
Liu, M., Tu, J., Feng, Y., Zhang, J., & Wu, J. (2020). Synergistic co-delivery of diacid metabolite of norcantharidin and ABT-737 based on folate-modified lipid bilayer-coated mesoporous silica nanoparticle against hepatic carcinoma.
Journal of nanobiotechnology,
18(1), 114.
https://doi.org/10.1186/s12951-020-00677-4
-
Wong, K. H., Lu, A., Chen, X., & Yang, Z. (2020). Natural Ingredient-Based Polymeric Nanoparticles for Cancer Treatment.
Molecules (Basel, Switzerland),
25(16), 3620.
https://doi.org/10.3390/molecules25163620
-
Demirbağ Karaali, M., & Aydın Karataş, E. (2020). Investigation of the potential anticancer effects of napelline and talatisamine dirterpenes on experimental brain tumor models.
Cytotechnology,
72(4), 569–578.
https://doi.org/10.1007/s10616-020-00405-8
-
Hajiahmadi, Z., Shirzadian-Khorramabad, R., Kazemzad, M., Sohani, M. M., & Khajehali, J. (2020). A novel, simple, and stable mesoporous silica nanoparticle-based gene transformation approach in
Solanum lycopersicum.
3 Biotech,
10(8), 370.
https://doi.org/10.1007/s13205-020-02359-2
-
Ferreira, D., Fontinha, D., Martins, C., Pires, D., Fernandes, A. R., & Baptista, P. V. (2020). Gold Nanoparticles for Vectorization of Nucleic Acids for Cancer Therapeutics.
Molecules (Basel, Switzerland),
25(15), 3489.
https://doi.org/10.3390/molecules25153489
-
Michael, P., Lam, Y. T., Filipe, E. C., Tan, R. P., Chan, A., Lee, B., Feng, N., Hung, J., Cox, T. R., Santos, M., & Wise, S. G. (2020). Plasma polymerized nanoparticles effectively deliver dual siRNA and drug therapy in vivo.
Scientific reports,
10(1), 12836.
https://doi.org/10.1038/s41598-020-69591-x
-
Sarkar, N., Morton, H., & Bose, S. (2020). Effects of vitamin C on osteoblast proliferation and osteosarcoma inhibition using plasma coated hydroxyapatite on titanium implants.
Surface & coatings technology,
394, 125793.
https://doi.org/10.1016/j.surfcoat.2020.125793
-
Kargozar, S., , Baino, F., , Hamzehlou, S., , Hamblin, M. R., , & Mozafari, M., (2020). Nanotechnology for angiogenesis: opportunities and challenges.
Chemical Society reviews,
49(14), 5008–5057.
https://doi.org/10.1039/c8cs01021h
-
Lu, L., Zhang, C., Zou, B., & Wang, Y. (2020). Hollow Prussian Blue Nanospheres for Photothermal/Chemo-Synergistic Therapy.
International journal of nanomedicine,
15, 5165–5177.
https://doi.org/10.2147/IJN.S252505
-
-
Shao, W., Yang, C., Li, F., Wu, J., Wang, N., Ding, Q., Gao, J., & Ling, D. (2020). Molecular Design of Conjugated Small Molecule Nanoparticles for Synergistically Enhanced PTT/PDT.
Nano-micro letters,
12(1), 147.
https://doi.org/10.1007/s40820-020-00474-6
-
Gao, J., Wang, W. Q., Pei, Q., Lord, M. S., & Yu, H. J. (2020). Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy.
Acta pharmacologica Sinica,
41(7), 986–994.
https://doi.org/10.1038/s41401-020-0400-z
-
Sun, Q., Bai, X., Sofias, A. M., van der Meel, R., Ruiz-Hernandez, E., Storm, G., Hennink, W. E., De Geest, B., Kiessling, F., Yu, H. J., Lammers, T., & Shi, Y. (2020). Cancer nanomedicine meets immunotherapy: opportunities and challenges.
Acta pharmacologica Sinica,
41(7), 954–958.
https://doi.org/10.1038/s41401-020-0448-9
-
Mirsafaei, R., & Varshosaz, J. (2020). Polyacrylamide-punicic acid conjugate-based micelles for flutamide delivery in PC3 cells of prostate cancer: synthesis, characterisation and cytotoxicity studies.
IET nanobiotechnology,
14(5), 417–422.
https://doi.org/10.1049/iet-nbt.2020.0014
-
Lai, Y. H., Chiang, C. S., Hsu, C. H., Cheng, H. W., & Chen, S. Y. (2020). Development and Characterization of a Fucoidan-Based Drug Delivery System by Using Hydrophilic Anticancer Polysaccharides to Simultaneously Deliver Hydrophobic Anticancer Drugs.
Biomolecules,
10(7), 970.
https://doi.org/10.3390/biom10070970
-
Manivannan, S., & Ponnuchamy, K. (2020). Quantum dots as a promising agent to combat COVID-19.
Applied organometallic chemistry, e5887. Advance online publication.
https://doi.org/10.1002/aoc.5887
-
Rajora, A. K., Ravishankar, D., Zhang, H., & Rosenholm, J. M. (2020). Recent Advances and Impact of Chemotherapeutic and Antiangiogenic Nanoformulations for Combination Cancer Therapy.
Pharmaceutics,
12(6), 592.
https://doi.org/10.3390/pharmaceutics12060592
-
Singh, N., Millot, N., Maurizi, L., Lizard, G., & Kumar, R. (2020). Taurine-Conjugated Mussel-Inspired Iron Oxide Nanoparticles with an Elongated Shape for Effective Delivery of Doxorubicin into the Tumor Cells.
ACS omega,
5(26), 16165–16175.
https://doi.org/10.1021/acsomega.0c01747
-
Peng, C., Huang, Y., & Zheng, J. (2020). Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance.
Journal of controlled release : official journal of the Controlled Release Society,
322, 64–80.
https://doi.org/10.1016/j.jconrel.2020.03.020
-
Montaseri, H., Kruger, C. A., & Abrahamse, H. (2020). Review: Organic nanoparticle based active targeting for photodynamic therapy treatment of breast cancer cells.
Oncotarget,
11(22), 2120–2136.
https://doi.org/10.18632/oncotarget.27596
-
Zaki, A. G., El-Sayed, E. R., Abd Elkodous, M., & El-Sayyad, G. S. (2020). Microbial acetylcholinesterase inhibitors for Alzheimer's therapy: recent trends on extraction, detection, irradiation-assisted production improvement and nano-structured drug delivery.
Applied microbiology and biotechnology,
104(11), 4717–4735.
https://doi.org/10.1007/s00253-020-10560-9
-
Lemmerman, L. R., Das, D., Higuita-Castro, N., Mirmira, R. G., & Gallego-Perez, D. (2020). Nanomedicine-Based Strategies for Diabetes: Diagnostics, Monitoring, and Treatment.
Trends in endocrinology and metabolism: TEM,
31(6), 448–458.
https://doi.org/10.1016/j.tem.2020.02.001
-
Kazakov, A. G., Garashchenko, B. L., Ivanova, M. K., Vinokurov, S. E., & Myasoedov, B. F. (2020). Carbon Nanomaterials for Sorption of 68Ga for Potential Using in Positron Emission Tomography.
Nanomaterials (Basel, Switzerland),
10(6), 1090.
https://doi.org/10.3390/nano10061090
-
-
Prasad, C., Bhatia, E., & Banerjee, R. (2020). Curcumin Encapsulated Lecithin Nanoemulsions: An Oral Platform for Ultrasound Mediated Spatiotemporal Delivery of Curcumin to the Tumor.
Scientific reports,
10(1), 8587.
https://doi.org/10.1038/s41598-020-65468-1
-
Tatiparti, K., Rauf, M. A., Sau, S., & Iyer, A. K. (2020). Carbonic Anhydrase-IX Guided Albumin Nanoparticles for Hypoxia-mediated Triple-Negative Breast Cancer Cell Killing and Imaging of Patient-derived Tumor.
Molecules (Basel, Switzerland),
25(10), 2362.
https://doi.org/10.3390/molecules25102362
-
Martinelli, C., Battaglini, M., Pucci, C., Gioi, S., Caracci, C., Macaluso, G., Doccini, S., Santorelli, F. M., & Ciofani, G. (2020). Development of Nanostructured Lipid Carriers for the Delivery of Idebenone in Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay.
ACS omega,
5(21), 12451–12466.
https://doi.org/10.1021/acsomega.0c01282
-
Su, T., Yang, B., Gao, T., Liu, T., & Li, J. (2020). Polymer nanoparticle-assisted chemotherapy of pancreatic cancer.
Therapeutic advances in medical oncology,
12, 1758835920915978.
https://doi.org/10.1177/1758835920915978
-
Alhajj, N., Zakaria, Z., Naharudin, I., Ahsan, F., Li, W., & Wong, T. W. (2020). Critical physicochemical attributes of chitosan nanoparticles admixed lactose-PEG 3000 microparticles in pulmonary inhalation.
Asian journal of pharmaceutical sciences,
15(3), 374–384.
https://doi.org/10.1016/j.ajps.2019.02.001
-
Zhang, X., Liu, Y., Gopalakrishnan, S., Castellanos-Garcia, L., Li, G., Malassiné, M., Uddin, I., Huang, R., Luther, D. C., Vachet, R. W., & Rotello, V. M. (2020). Intracellular Activation of Bioorthogonal Nanozymes through Endosomal Proteolysis of the Protein Corona.
ACS nano,
14(4), 4767–4773.
https://doi.org/10.1021/acsnano.0c00629
-
Zheng, D., Yu, P., Wei, Z., Zhong, C., Wu, M., & Liu, X. (2020). RBC Membrane Camouflaged Semiconducting Polymer Nanoparticles for Near-Infrared Photoacoustic Imaging and Photothermal Therapy.
Nano-micro letters,
12(1), 94.
https://doi.org/10.1007/s40820-020-00429-x
-
Layek, B., Shetty, M., Nethi, S. K., Sehgal, D., Starr, T. K., & Prabha, S. (2020). Mesenchymal Stem Cells As Guideposts for Nanoparticle-Mediated Targeted Drug Delivery in Ovarian Cancer.
Cancers,
12(4), 965.
https://doi.org/10.3390/cancers12040965
-
-
-
Cheng, Y. H., He, C., Riviere, J. E., Monteiro-Riviere, N. A., & Lin, Z. (2020). Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach.
ACS nano,
14(3), 3075–3095.
https://doi.org/10.1021/acsnano.9b08142
-
-
Levit, S. L., Yang, H., & Tang, C. (2020). Rapid Self-Assembly of Polymer Nanoparticles for Synergistic Codelivery of Paclitaxel and Lapatinib via Flash NanoPrecipitation.
Nanomaterials (Basel, Switzerland),
10(3), 561.
https://doi.org/10.3390/nano10030561
-
Agabeigi, R., Rasta, S. H., Rahmati-Yamchi, M., Salehi, R., & Alizadeh, E. (2020). Novel Chemo-Photothermal Therapy in Breast Cancer Using Methotrexate-Loaded Folic Acid Conjugated Au@SiO2 Nanoparticles.
Nanoscale research letters,
15(1), 62.
https://doi.org/10.1186/s11671-020-3295-1
-
Wang, J., Wu, X., Shen, P., Wang, J., Shen, Y., Shen, Y., Webster, T. J., & Deng, J. (2020). Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment.
International journal of nanomedicine,
15, 1903–1914.
https://doi.org/10.2147/IJN.S239751
-
Guo, F., Fu, Q., Zhou, K., Jin, C., Wu, W., Ji, X., Yan, Q., Yang, Q., Wu, D., Li, A., & Yang, G. (2020). Matrix metalloprotein-triggered, cell penetrating peptide-modified star-shaped nanoparticles for tumor targeting and cancer therapy.
Journal of nanobiotechnology,
18(1), 48.
https://doi.org/10.1186/s12951-020-00595-5
-
Mahdavi, M., Fattahi, A., Tajkhorshid, E., & Nouranian, S. (2020). Molecular Insights into the Loading and Dynamics of Doxorubicin on PEGylated Graphene Oxide Nanocarriers.
ACS applied bio materials,
3(3), 1354–1363.
https://doi.org/10.1021/acsabm.9b00956
-
Mi P. (2020). Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics.
Theranostics,
10(10), 4557–4588.
https://doi.org/10.7150/thno.38069
-
Xiong, D., Wen, L., Peng, S., Xu, J., & Zhang, L. (2020). Reversible Cross-Linked Mixed Micelles for pH Triggered Swelling and Redox Triggered Degradation for Enhanced and Controlled Drug Release.
Pharmaceutics,
12(3), 258.
https://doi.org/10.3390/pharmaceutics12030258
-
Ren, X., Zhang, P., & Chen, Z. (2020). Dialysis Preparation of Smart Redox and Acidity Dual Responsive Tea Polyphenol Functionalized Calcium Phosphate Nanospheres as Anticancer Drug Carriers.
Molecules (Basel, Switzerland),
25(5), 1221.
https://doi.org/10.3390/molecules25051221
-
Weng, Y., Huang, Q., Li, C., Yang, Y., Wang, X., Yu, J., Huang, Y., & Liang, X. J. (2020). Improved Nucleic Acid Therapy with Advanced Nanoscale Biotechnology.
Molecular therapy. Nucleic acids,
19, 581–601.
https://doi.org/10.1016/j.omtn.2019.12.004
-
Ali, I., Alsehli, M., Scotti, L., Tullius Scotti, M., Tsai, S. T., Yu, R. S., Hsieh, M. F., & Chen, J. C. (2020). Progress in Polymeric Nano-Medicines for Theranostic Cancer Treatment.
Polymers,
12(3), 598.
https://doi.org/10.3390/polym12030598
-
Su, H., Wang, F., Ran, W., Zhang, W., Dai, W., Wang, H., Anderson, C. F., Wang, Z., Zheng, C., Zhang, P., Li, Y., & Cui, H. (2020). The role of critical micellization concentration in efficacy and toxicity of supramolecular polymers.
Proceedings of the National Academy of Sciences of the United States of America,
117(9), 4518–4526.
https://doi.org/10.1073/pnas.1913655117
-
Palanikumar, L., Al-Hosani, S., Kalmouni, M., Nguyen, V. P., Ali, L., Pasricha, R., Barrera, F. N., & Magzoub, M. (2020). pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics.
Communications biology,
3(1), 95.
https://doi.org/10.1038/s42003-020-0817-4
-
Tolliver, L. M., Holl, N. J., Hou, F., Lee, H. J., Cambre, M. H., & Huang, Y. W. (2020). Differential Cytotoxicity Induced by Transition Metal Oxide Nanoparticles is a Function of Cell Killing and Suppression of Cell Proliferation.
International journal of molecular sciences,
21(5), 1731.
https://doi.org/10.3390/ijms21051731
-
Ruman, U., Fakurazi, S., Masarudin, M. J., & Hussein, M. Z. (2020). Nanocarrier-Based Therapeutics and Theranostics Drug Delivery Systems for Next Generation of Liver Cancer Nanodrug Modalities.
International journal of nanomedicine,
15, 1437–1456.
https://doi.org/10.2147/IJN.S236927
-
Ashihara, K., Terai, Y., Tanaka, T., Tanaka, Y., Fujiwara, S., Maeda, K., Tunetoh, S., Sasaki, H., Hayashi, M., & Ohmichi, M. (2020). Pharmacokinetic evaluation and antitumor potency of liposomal nanoparticle encapsulated cisplatin targeted to CD24-positive cells in ovarian cancer.
Oncology letters,
19(3), 1872–1880.
https://doi.org/10.3892/ol.2020.11279
-
Xu, H., Ma, B., Jiang, J., Xiao, S., Peng, R., Zhuang, W., Li, G., & Wang, Y. (2020). Integrated prodrug micelles with two-photon bioimaging and pH-triggered drug delivery for cancer theranostics.
Regenerative biomaterials,
7(2), 171–180.
https://doi.org/10.1093/rb/rbz035
-
Fang, J., Hsueh, Y. Y., Soto, J., Sun, W., Wang, J., Gu, Z., Khademhosseini, A., & Li, S. (2020). Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming.
ACS nano,
14(2), 1296–1318.
https://doi.org/10.1021/acsnano.9b04837
-
Liu, Z., Cao, T., Xue, Y., Li, M., Wu, M., Engle, J. W., He, Q., Cai, W., Lan, M., & Zhang, W. (2020). Self-Amplified Photodynamic Therapy through the 1 O2 -Mediated Internalization of Photosensitizers from a Ppa-Bearing Block Copolymer.
Angewandte Chemie (International ed. in English),
59(9), 3711–3717.
https://doi.org/10.1002/anie.201914434
-
Vigata, M., Meinert, C., Pahoff, S., Bock, N., & Hutmacher, D. W. (2020). Gelatin Methacryloyl Hydrogels Control the Localized Delivery of Albumin-Bound Paclitaxel.
Polymers,
12(2), 501.
https://doi.org/10.3390/polym12020501
-
Baboci, L., Capolla, S., Di Cintio, F., Colombo, F., Mauro, P., Dal Bo, M., Argenziano, M., Cavalli, R., Toffoli, G., & Macor, P. (2020). The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target.
Journal of oncology,
2020, 4638192.
https://doi.org/10.1155/2020/4638192
-
Amerigos Daddy J C, K., Chen, M., Raza, F., Xiao, Y., Su, Z., & Ping, Q. (2020). Co-Encapsulation of Mitoxantrone and β-Elemene in Solid Lipid Nanoparticles to Overcome Multidrug Resistance in Leukemia.
Pharmaceutics,
12(2), 191.
https://doi.org/10.3390/pharmaceutics12020191
-
Nuñez-Rivera, A., Fournier, P., Arellano, D. L., Rodriguez-Hernandez, A. G., Vazquez-Duhalt, R., & Cadena-Nava, R. D. (2020). Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes.
Beilstein journal of nanotechnology,
11, 372–382.
https://doi.org/10.3762/bjnano.11.28
-
Li, J., Jia, Y., Zhang, P., Yang, H., Cong, X., An, L., & Xiao, C. (2020). Celastrol Self-Stabilized Nanoparticles for Effective Treatment of Melanoma.
International journal of nanomedicine,
15, 1205–1214.
https://doi.org/10.2147/IJN.S232603
-
Ferreira, M., Rizzuti, I. F., Palange, A. L., Barbato, M. G., Di Francesco, V., Di Francesco, M., & Decuzzi, P. (2020). Optimizing the Pharmacological Properties of Discoidal Polymeric Nanoconstructs Against Triple-Negative Breast Cancer Cells.
Frontiers in bioengineering and biotechnology,
8, 5.
https://doi.org/10.3389/fbioe.2020.00005
-
Yang, M., Yang, W., Chen, L., Ding, M., Li, C., & Shi, D. (2020). A Novel Synthesis of Fe3O4@SiO2@Au@Porous SiO2 Structure for NIR Irradiation-Induced DOX Release and Cancer Treatment.
Dose-response : a publication of International Hormesis Society,
18(1), 1559325820906662.
https://doi.org/10.1177/1559325820906662
-
Francia, V., Montizaan, D., & Salvati, A. (2020). Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine.
Beilstein journal of nanotechnology,
11, 338–353.
https://doi.org/10.3762/bjnano.11.25
-
Chibh, S., Kour, A., Yadav, N., Kumar, P., Yadav, P., Chauhan, V. S., & Panda, J. J. (2020). Redox-Responsive Dipeptide Nanostructures toward Targeted Cancer Therapy.
ACS omega,
5(7), 3365–3375.
https://doi.org/10.1021/acsomega.9b03547
-
Wirthl, B., Kremheller, J., Schrefler, B. A., & Wall, W. A. (2020). Extension of a multiphase tumour growth model to study nanoparticle delivery to solid tumours.
PloS one,
15(2), e0228443.
https://doi.org/10.1371/journal.pone.0228443
-
Hashemzadeh, H., Javadi, H., & Darvishi, M. H. (2020). Study of Structural stability and formation mechanisms in DSPC and DPSM liposomes: A coarse-grained molecular dynamics simulation.
Scientific reports,
10(1), 1837.
https://doi.org/10.1038/s41598-020-58730-z
-
Li, S., Liu, J., Sun, M., Wang, J., Wang, C., & Sun, Y. (2020). Cell Membrane-Camouflaged Nanocarriers for Cancer Diagnostic and Therapeutic.
Frontiers in pharmacology,
11, 24.
https://doi.org/10.3389/fphar.2020.00024
-
Jovčevska, I., & Muyldermans, S. (2020). The Therapeutic Potential of Nanobodies.
BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy,
34(1), 11–26.
https://doi.org/10.1007/s40259-019-00392-z
-
Bang, Y. J., Li, C. P., Lee, K. H., Chiu, C. F., Park, J. O., Shan, Y. S., Kim, J. S., Chen, J. S., Shim, H. J., Rau, K. M., Choi, H. J., Oh, D. Y., Belanger, B., & Chen, L. T. (2020). Liposomal irinotecan in metastatic pancreatic adenocarcinoma in Asian patients: Subgroup analysis of the NAPOLI-1 study.
Cancer science,
111(2), 513–527.
https://doi.org/10.1111/cas.14264
-
Kang, H., Stiles, W. R., Baek, Y., Nomura, S., Bao, K., Hu, S., Park, G. K., Jo, M. J., I, H., Coll, J. L., Rubin, B. P., & Choi, H. S. (2020). Renal Clearable Theranostic Nanoplatforms for Gastrointestinal Stromal Tumors.
Advanced materials (Deerfield Beach, Fla.),
32(6), e1905899.
https://doi.org/10.1002/adma.201905899
-
Rabiee, N., Yaraki, M. T., Garakani, S. M., Garakani, S. M., Ahmadi, S., Lajevardi, A., Bagherzadeh, M., Rabiee, M., Tayebi, L., Tahriri, M., & Hamblin, M. R. (2020). Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy.
Biomaterials,
232, 119707.
https://doi.org/10.1016/j.biomaterials.2019.119707
-
Al-Refaei, M. A., Makki, R. M., & Ali, H. M. (2020). Structure prediction of transferrin receptor protein 1 (TfR1) by homology modelling, docking, and molecular dynamics simulation studies.
Heliyon,
6(1), e03221.
https://doi.org/10.1016/j.heliyon.2020.e03221
-
Peng, R., Ji, H., Jin, L., Lin, S., Huang, Y., Xu, K., Yang, Q., Sun, D., & Wu, W. (2020). Macrophage-Based Therapies for Atherosclerosis Management.
Journal of immunology research,
2020, 8131754.
https://doi.org/10.1155/2020/8131754
-
Bhattacharyya, S., & Ghosh, S. S. (2020). Transmembrane TNFα-Expressed Macrophage Membrane-Coated Chitosan Nanoparticles as Cancer Therapeutics.
ACS omega,
5(3), 1572–1580.
https://doi.org/10.1021/acsomega.9b03531
-
-
Chauhan, N., Kruse, A., Newby, H., Jaggi, M., Yallapu, M. M., & Chauhan, S. C. (2020). Pluronic Polymer-Based Ormeloxifene Nanoformulations Induce Superior Anticancer Effects in Pancreatic Cancer Cells.
ACS omega,
5(2), 1147–1156.
https://doi.org/10.1021/acsomega.9b03382
-
Jia, W., Burns, J. M., Villantay, B., Tang, J. C., Vankayala, R., Lertsakdadet, B., Choi, B., Nelson, J. S., & Anvari, B. (2020). Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers.
ACS applied materials & interfaces,
12(1), 275–287.
https://doi.org/10.1021/acsami.9b18624
-
Liang, B. J., Pigula, M., Baglo, Y., Najafali, D., Hasan, T., & Huang, H. C. (2020). Breaking the selectivity-uptake trade-off of photoimmunoconjugates with nanoliposomal irinotecan for synergistic multi-tier cancer targeting.
Journal of nanobiotechnology,
18(1), 1.
https://doi.org/10.1186/s12951-019-0560-5
-
Lakkadwala, S., Dos Santos Rodrigues, B., Sun, C., & Singh, J. (2020). Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo.
Nanomedicine : nanotechnology, biology, and medicine,
23, 102112.
https://doi.org/10.1016/j.nano.2019.102112
-
Dasgupta, A., Biancacci, I., Kiessling, F., & Lammers, T. (2020). Imaging-assisted anticancer nanotherapy.
Theranostics,
10(3), 956–967.
https://doi.org/10.7150/thno.38288
-
Zhao, M., van Straten, D., Broekman, M., Préat, V., & Schiffelers, R. M. (2020). Nanocarrier-based drug combination therapy for glioblastoma.
Theranostics,
10(3), 1355–1372.
https://doi.org/10.7150/thno.38147
-
Shi, J., Granger, B., Xu, K., & Yang, Y. (2020). Quantitative X-ray fluorescence imaging of gold nanoparticles using joint L1 and total variation regularized reconstruction.
Quantitative imaging in medicine and surgery,
10(1), 184–196.
https://doi.org/10.21037/qims.2019.10.15
-
-
Yang, W., Veroniaina, H., Qi, X., Chen, P., Li, F., & Ke, P. C. (2020). Soft and Condensed Nanoparticles and Nanoformulations for Cancer Drug Delivery and Repurpose.
Advanced therapeutics,
3(1), 1900102.
https://doi.org/10.1002/adtp.201900102
-
Forte, E., Fiorenza, D., Torino, E., Costagliola di Polidoro, A., Cavaliere, C., Netti, P. A., Salvatore, M., & Aiello, M. (2019). Radiolabeled PET/MRI Nanoparticles for Tumor Imaging.
Journal of clinical medicine,
9(1), 89.
https://doi.org/10.3390/jcm9010089
-
Helal-Neto, E., Barros, A., Saldanha-Gama, R., Brandão-Costa, R., Alencar, L., Santos, C., Martínez-Máñez, R., Ricci-Junior, E., Alexis, F., Morandi, V., Barja-Fidalgo, C., & Santos-Oliveira, R. (2019). Molecular and Cellular Risk Assessment of Healthy Human Cells and Cancer Human Cells Exposed to Nanoparticles.
International journal of molecular sciences,
21(1), 230.
https://doi.org/10.3390/ijms21010230
-
Mazzotta, E., De Benedittis, S., Qualtieri, A., & Muzzalupo, R. (2019). Actively Targeted and Redox Responsive Delivery of Anticancer Drug by Chitosan Nanoparticles.
Pharmaceutics,
12(1), 26.
https://doi.org/10.3390/pharmaceutics12010026
-
Youssef, F. S., El-Banna, H. A., Elzorba, H. Y., & Galal, A. M. (2019). Application of some nanoparticles in the field of veterinary medicine.
International journal of veterinary science and medicine,
7(1), 78–93.
https://doi.org/10.1080/23144599.2019.1691379
-
Lumen, D., Näkki, S., Imlimthan, S., Lambidis, E., Sarparanta, M., Xu, W., Lehto, V. P., & Airaksinen, A. J. (2019). Site-Specific 111In-Radiolabeling of Dual-PEGylated Porous Silicon Nanoparticles and Their In Vivo Evaluation in Murine 4T1 Breast Cancer Model.
Pharmaceutics,
11(12), 686.
https://doi.org/10.3390/pharmaceutics11120686
-
Saleem, K., Khursheed, Z., Hano, C., Anjum, I., & Anjum, S. (2019). Applications of Nanomaterials in Leishmaniasis: A Focus on Recent Advances and Challenges.
Nanomaterials (Basel, Switzerland),
9(12), 1749.
https://doi.org/10.3390/nano9121749
-
Morelli, L., Gimondi, S., Sevieri, M., Salvioni, L., Guizzetti, M., Colzani, B., Palugan, L., Foppoli, A., Talamini, L., Morosi, L., Zucchetti, M., Violatto, M. B., Russo, L., Salmona, M., Prosperi, D., Colombo, M., & Bigini, P. (2019). Monitoring the Fate of Orally Administered PLGA Nanoformulation for Local Delivery of Therapeutic Drugs.
Pharmaceutics,
11(12), 658.
https://doi.org/10.3390/pharmaceutics11120658
-
Cristallini, C., Barbani, N., Bianchi, S., Maltinti, S., Baldassare, A., Ishak, R., Onor, M., Ambrosio, L., Castelvetro, V., & Cascone, M. G. (2019). Assessing two-way interactions between cells and inorganic nanoparticles.
Journal of materials science. Materials in medicine,
31(1), 1.
https://doi.org/10.1007/s10856-019-6328-5
-
Chen, Q., Bao, Y., Burner, D., Kaushal, S., Zhang, Y., Mendoza, T., Bouvet, M., Ozkan, C., Minev, B., & Ma, W. (2019). Tumor growth inhibition by mSTEAP peptide nanovaccine inducing augmented CD8+ T cell immune responses.
Drug delivery and translational research,
9(6), 1095–1105.
https://doi.org/10.1007/s13346-019-00652-z
-
Kita, Y., Hamada, A., Saito, R., Teramoto, Y., Tanaka, R., Takano, K., Nakayama, K., Murakami, K., Matsumoto, K., Akamatsu, S., Yamasaki, T., Inoue, T., Tabata, Y., Okuno, Y., Ogawa, O., & Kobayashi, T. (2019). Systematic chemical screening identifies disulfiram as a repurposed drug that enhances sensitivity to cisplatin in bladder cancer: a summary of preclinical studies.
British journal of cancer,
121(12), 1027–1038.
https://doi.org/10.1038/s41416-019-0609-0
-
Li, Y., Zhai, Y., Liu, W., Zhang, K., Liu, J., Shi, J., & Zhang, Z. (2019). Ultrasmall nanostructured drug based pH-sensitive liposome for effective treatment of drug-resistant tumor.
Journal of nanobiotechnology,
17(1), 117.
https://doi.org/10.1186/s12951-019-0550-7
-
Lin, F., Jia, H. R., & Wu, F. G. (2019). Glycol Chitosan: A Water-Soluble Polymer for Cell Imaging and Drug Delivery.
Molecules (Basel, Switzerland),
24(23), 4371.
https://doi.org/10.3390/molecules24234371
-
Stühn, L., Auernhammer, J., & Dietz, C. (2019). pH-depended protein shell dis- and reassembly of ferritin nanoparticles revealed by atomic force microscopy.
Scientific reports,
9(1), 17755.
https://doi.org/10.1038/s41598-019-53943-3
-
Ashour, A. E., Badran, M., Kumar, A., Hussain, T., Alsarra, I. A., & Yassin, A. (2019). Physical PEGylation Enhances The Cytotoxicity Of 5-Fluorouracil-Loaded PLGA And PCL Nanoparticles.
International journal of nanomedicine,
14, 9259–9273.
https://doi.org/10.2147/IJN.S223368
-
Hao, Y. N., Zheng, A. Q., Guo, T. T., Shu, Y., Wang, J. H., Johnson, O., & Chen, W. (2019). Glutathione triggered degradation of polydopamine to facilitate controlled drug release for synergic combinational cancer treatment.
Journal of materials chemistry. B,
7(43), 6742–6750.
https://doi.org/10.1039/c9tb01400d
-
Chenthamara, D., Subramaniam, S., Ramakrishnan, S. G., Krishnaswamy, S., Essa, M. M., Lin, F. H., & Qoronfleh, M. W. (2019). Therapeutic efficacy of nanoparticles and routes of administration.
Biomaterials research,
23, 20.
https://doi.org/10.1186/s40824-019-0166-x
-
Yan, L., Luo, L., Amirshaghaghi, A., Miller, J., Meng, C., You, T., Busch, T. M., Tsourkas, A., & Cheng, Z. (2019). Dextran-Benzoporphyrin Derivative (BPD) Coated Superparamagnetic Iron Oxide Nanoparticle (SPION) Micelles for T2-Weighted Magnetic Resonance Imaging and Photodynamic Therapy.
Bioconjugate chemistry,
30(11), 2974–2981.
https://doi.org/10.1021/acs.bioconjchem.9b00676
-
-
d'Angelo, M., Castelli, V., Benedetti, E., Antonosante, A., Catanesi, M., Dominguez-Benot, R., Pitari, G., Ippoliti, R., & Cimini, A. (2019). Theranostic Nanomedicine for Malignant Gliomas.
Frontiers in bioengineering and biotechnology,
7, 325.
https://doi.org/10.3389/fbioe.2019.00325
-
Tataranni, T., & Piccoli, C. (2019). Dichloroacetate (DCA) and Cancer: An Overview towards Clinical Applications.
Oxidative medicine and cellular longevity,
2019, 8201079.
https://doi.org/10.1155/2019/8201079
-
Zhao, Z., Ukidve, A., Gao, Y., Kim, J., & Mitragotri, S. (2019). Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis.
Science advances,
5(11), eaax9250.
https://doi.org/10.1126/sciadv.aax9250
-
Mattheolabakis, G., & Mikelis, C. M. (2019). Nanoparticle Delivery and Tumor Vascular Normalization: The Chicken or The Egg?.
Frontiers in oncology,
9, 1227.
https://doi.org/10.3389/fonc.2019.01227
-
Altay, Y., Cao, S., Che, H., Abdelmohsen, L., & van Hest, J. (2019). Adaptive Polymeric Assemblies for Applications in Biomimicry and Nanomedicine.
Biomacromolecules,
20(11), 4053–4064.
https://doi.org/10.1021/acs.biomac.9b01341
-
van der Meel, R., Sulheim, E., Shi, Y., Kiessling, F., Mulder, W., & Lammers, T. (2019). Smart cancer nanomedicine.
Nature nanotechnology,
14(11), 1007–1017.
https://doi.org/10.1038/s41565-019-0567-y
-
Saqr, A., Vakili, M. R., Huang, Y. H., Lai, R., & Lavasanifar, A. (2019). Development of Traceable Rituximab-Modified PEO-Polyester Micelles by Postinsertion of PEG-phospholipids for Targeting of B-cell Lymphoma.
ACS omega,
4(20), 18867–18879.
https://doi.org/10.1021/acsomega.9b02910
-
Loya, J., Zhang, C., Cox, E., Achrol, A. S., & Kesari, S. (2019). Biological intratumoral therapy for the high-grade glioma part II: vector- and cell-based therapies and radioimmunotherapy.
CNS oncology,
8(3), CNS40.
https://doi.org/10.2217/cns-2019-0002
-
Dumontel, B., Susa, F., Limongi, T., Canta, M., Racca, L., Chiodoni, A., Garino, N., Chiabotto, G., Centomo, M. L., Pignochino, Y., & Cauda, V. (2019). ZnO nanocrystals shuttled by extracellular vesicles as effective Trojan nano-horses against cancer cells.
Nanomedicine (London, England),
14(21), 2815–2833.
https://doi.org/10.2217/nnm-2019-0231
-
Yin, X., Luo, L., Li, W., Yang, J., Zhu, C., Jiang, M., Qin, B., Yuan, X., Yin, H., Lu, Y., Du, Y., Chen, D., & You, J. (2019). A cabazitaxel liposome for increased solubility, enhanced antitumor effect and reduced systemic toxicity.
Asian journal of pharmaceutical sciences,
14(6), 658–667.
https://doi.org/10.1016/j.ajps.2018.10.004
-
Lee, M. H., Liu, K. H., Thomas, J. L., Chen, J. R., & Lin, H. Y. (2019). Immunotherapy of Hepatocellular Carcinoma with Magnetic PD-1 Peptide-Imprinted Polymer Nanocomposite and Natural Killer Cells.
Biomolecules,
9(11), 651.
https://doi.org/10.3390/biom9110651
-
Gdowski, A. S., Lampe, J. B., Lin, V., Joshi, R., Wang, Y. C., Mukerjee, A., Vishwanatha, J. K., & Ranjan, A. P. (2019). Bioinspired Nanoparticles Engineered for Enhanced Delivery to the Bone.
ACS applied nano materials,
2(10), 6249–6257.
https://doi.org/10.1021/acsanm.9b01226
-
Jiang, Z., Pflug, K., Usama, S. M., Kuai, D., Yan, X., Sitcheran, R., & Burgess, K. (2019). Cyanine-Gemcitabine Conjugates as Targeted Theranostic Agents for Glioblastoma Tumor Cells.
Journal of medicinal chemistry,
62(20), 9236–9245.
https://doi.org/10.1021/acs.jmedchem.9b01147
-
Chen, J., Liu, J., Hu, Y., Tian, Z., & Zhu, Y. (2019). Metal-organic framework-coated magnetite nanoparticles for synergistic magnetic hyperthermia and chemotherapy with pH-triggered drug release.
Science and technology of advanced materials,
20(1), 1043–1054.
https://doi.org/10.1080/14686996.2019.1682467
-
Myerson, J. W., McPherson, O., DeFrates, K. G., Towslee, J. H., Marcos-Contreras, O. A., Shuvaev, V. V., Braender, B., Composto, R. J., Muzykantov, V. R., & Eckmann, D. M. (2019). Cross-linker-Modulated Nanogel Flexibility Correlates with Tunable Targeting to a Sterically Impeded Endothelial Marker.
ACS nano,
13(10), 11409–11421.
https://doi.org/10.1021/acsnano.9b04789
-
Levada, K., Omelyanchik, A., Rodionova, V., Weiskirchen, R., & Bartneck, M. (2019). Magnetic-Assisted Treatment of Liver Fibrosis.
Cells,
8(10), 1279.
https://doi.org/10.3390/cells8101279
-
Zhang, S., Guo, N., Wan, G., Zhang, T., Li, C., Wang, Y., Wang, Y., & Liu, Y. (2019). pH and redox dual-responsive nanoparticles based on disulfide-containing poly(β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer.
Journal of nanobiotechnology,
17(1), 109.
https://doi.org/10.1186/s12951-019-0540-9
-
Xu, X., Li, T., Shen, S., Wang, J., Abdou, P., Gu, Z., & Mo, R. (2019). Advances in Engineering Cells for Cancer Immunotherapy.
Theranostics,
9(25), 7889–7905.
https://doi.org/10.7150/thno.38583
-
Yang, X., Xie, S., Yang, X., Cueva, J. C., Hou, X., Tang, Z., Yao, H., Mo, F., Yin, S., Liu, A., & Lu, X. (2019). Opportunities and Challenges for Antibodies against Intracellular Antigens.
Theranostics,
9(25), 7792–7806.
https://doi.org/10.7150/thno.35486
-
-
Li, C., Yang, X. Q., An, J., Cheng, K., Hou, X. L., Zhang, X. S., Song, X. L., Huang, K. C., Chen, W., Liu, B., Zhao, Y. D., & Liu, T. C. (2019). A near-infrared light-controlled smart nanocarrier with reversible polypeptide-engineered valve for targeted fluorescence-photoacoustic bimodal imaging-guided chemo-photothermal therapy.
Theranostics,
9(25), 7666–7679.
https://doi.org/10.7150/thno.37047
-
Hsu, J. C., Cruz, E. D., Lau, K. C., Bouché, M., Kim, J., Maidment, A., & Cormode, D. P. (2019). Renally Excretable and Size-Tunable Silver Sulfide Nanoparticles for Dual-Energy Mammography or Computed Tomography.
Chemistry of materials : a publication of the American Chemical Society,
31(19), 7845–7854.
https://doi.org/10.1021/acs.chemmater.9b01750
-
Yang, L., Zhou, Z., Song, J., & Chen, X. (2019). Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications.
Chemical Society reviews,
48(19), 5140–5176.
https://doi.org/10.1039/c9cs00011a
-
Sansaloni-Pastor, S., Bouilloux, J., & Lange, N. (2019). The Dark Side: Photosensitizer Prodrugs.
Pharmaceuticals (Basel, Switzerland),
12(4), 148.
https://doi.org/10.3390/ph12040148
-
Vanderburgh, J. P., Kwakwa, K. A., Werfel, T. A., Merkel, A. R., Gupta, M. K., Johnson, R. W., Guelcher, S. A., Duvall, C. L., & Rhoades, J. A. (2019). Systemic delivery of a Gli inhibitor via polymeric nanocarriers inhibits tumor-induced bone disease.
Journal of controlled release : official journal of the Controlled Release Society,
311-312, 257–272.
https://doi.org/10.1016/j.jconrel.2019.08.038
-
Fu, Y., Rathod, D., Abo-Ali, E. M., Dukhande, V. V., & Patel, K. (2019). EphA2-Receptor Targeted PEGylated Nanoliposomes for the Treatment of BRAFV600E Mutated Parent- and Vemurafenib-Resistant Melanoma.
Pharmaceutics,
11(10), 504.
https://doi.org/10.3390/pharmaceutics11100504
-
Liu, G., Gao, N., Zhou, Y., Nie, J., Cheng, W., Luo, M., Mei, L., Zeng, X., & Deng, W. (2019). Polydopamine-Based "Four-in-One" Versatile Nanoplatforms for Targeted Dual Chemo and Photothermal Synergistic Cancer Therapy.
Pharmaceutics,
11(10), 507.
https://doi.org/10.3390/pharmaceutics11100507
-
Yang, B., Choi, H., Kim, S. H., Yoon, H. J., & Lee, H. (2019). How will nanotechnology lead to better control of asthma?.
Annals of translational medicine,
7(20), 515.
https://doi.org/10.21037/atm.2019.09.129
-
Ðorđević, L., Arcudi, F., & Prato, M. (2019). Preparation, functionalization and characterization of engineered carbon nanodots.
Nature protocols,
14(10), 2931–2953.
https://doi.org/10.1038/s41596-019-0207-x
-
Huang, L., Zhang, H., Wu, S., Xu, X., Zhang, L., Ji, H., He, L., Qian, Y., Wang, Z., Chen, Y., Shen, J., Mao, Z. W., & Huang, Z. (2019). Charge Regulation of Self-Assembled Tubules by Protonation for Efficiently Selective and Controlled Drug Delivery.
iScience,
19, 224–231.
https://doi.org/10.1016/j.isci.2019.07.030
-
Pereira, D., Cardoso, B. D., Rodrigues, A., Amorim, C. O., Amaral, V. S., Almeida, B. G., Queiroz, M., Martinho, O., Baltazar, F., Calhelha, R. C., Ferreira, I., Coutinho, P., & Castanheira, E. (2019). Magnetoliposomes Containing Calcium Ferrite Nanoparticles for Applications in Breast Cancer Therapy.
Pharmaceutics,
11(9), 477.
https://doi.org/10.3390/pharmaceutics11090477
-
Chen, Z., Deán-Ben, X. L., Liu, N., Gujrati, V., Gottschalk, S., Ntziachristos, V., & Razansky, D. (2019). Concurrent fluorescence and volumetric optoacoustic tomography of nanoagent perfusion and bio-distribution in solid tumors.
Biomedical optics express,
10(10), 5093–5102.
https://doi.org/10.1364/BOE.10.005093
-
Li, X., Wang, J., Li, S., Liu, Z., Zheng, Z., & Zhang, Y. (2019). Development and Evaluation of Multifunctional Poly(Lactic-co-glycolic acid) Nanoparticles Embedded in Carboxymethyl β-Glucan Porous Microcapsules as a Novel Drug Delivery System for Gefitinib.
Pharmaceutics,
11(9), 469.
https://doi.org/10.3390/pharmaceutics11090469
-
Guo, Q., He, X., Li, C., He, Y., Peng, Y., Zhang, Y., Lu, Y., Chen, X., Zhang, Y., Chen, Q., Sun, T., & Jiang, C. (2019). Dandelion-Like Tailorable Nanoparticles for Tumor Microenvironment Modulation.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
6(21), 1901430.
https://doi.org/10.1002/advs.201901430
-
Lynn, G. M., Laga, R., & Jewell, C. M. (2019). Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines.
Cancer letters,
459, 192–203.
https://doi.org/10.1016/j.canlet.2019.114427
-
Zhang, Y., Fang, Z., Li, R., Huang, X., & Liu, Q. (2019). Design of Outer Membrane Vesicles as Cancer Vaccines: A New Toolkit for Cancer Therapy.
Cancers,
11(9), 1314.
https://doi.org/10.3390/cancers11091314
-
Anselmo, A. C., & Mitragotri, S. (2019). Nanoparticles in the clinic: An update.
Bioengineering & translational medicine,
4(3), e10143.
https://doi.org/10.1002/btm2.10143
-
Chauhan, N., Maher, D. M., Hafeez, B. B., Mandil, H., Singh, M. M., Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2019). Ormeloxifene nanotherapy for cervical cancer treatment.
International journal of nanomedicine,
14, 7107–7121.
https://doi.org/10.2147/IJN.S200944
-
Yamashita, K., Tsunoda, S., Gunji, S., Murakami, T., Suzuki, T., Tabata, Y., & Sakai, Y. (2019). Intraperitoneal chemotherapy for peritoneal metastases using sustained release formula of cisplatin-incorporated gelatin hydrogel granules.
Surgery today,
49(9), 785–794.
https://doi.org/10.1007/s00595-019-01792-y
-
Kaur, G., Arora, M., & Ravi Kumar, M. (2019). Oral Drug Delivery Technologies-A Decade of Developments.
The Journal of pharmacology and experimental therapeutics,
370(3), 529–543.
https://doi.org/10.1124/jpet.118.255828
-
Heath, B. R., Michmerhuizen, N. L., Donnelly, C. R., Sansanaphongpricha, K., Sun, D., Brenner, J. C., & Lei, Y. L. (2019). Head and Neck Cancer Immunotherapy beyond the Checkpoint Blockade.
Journal of dental research,
98(10), 1073–1080.
https://doi.org/10.1177/0022034519864112
-
Zhao, X., Liu, X., Zhang, P., Liu, Y., Ran, W., Cai, Y., Wang, J., Zhai, Y., Wang, G., Ding, Y., & Li, Y. (2019). Injectable peptide hydrogel as intraperitoneal triptolide depot for the treatment of orthotopic hepatocellular carcinoma.
Acta pharmaceutica Sinica. B,
9(5), 1050–1060.
https://doi.org/10.1016/j.apsb.2019.06.001
-
Wei, F., Yin, C., Zheng, J., Zhan, Z., & Yao, L. (2019). Rise of cyborg microrobot: different story for different configuration.
IET nanobiotechnology,
13(7), 651–664.
https://doi.org/10.1049/iet-nbt.2018.5374
-
Singh, A. P., Biswas, A., Shukla, A., & Maiti, P. (2019). Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles.
Signal transduction and targeted therapy,
4, 33.
https://doi.org/10.1038/s41392-019-0068-3
-
Zhuang, W., Ma, B., Hu, J., Jiang, J., Li, G., Yang, L., & Wang, Y. (2019). Two-photon AIE luminogen labeled multifunctional polymeric micelles for theranostics.
Theranostics,
9(22), 6618–6630.
https://doi.org/10.7150/thno.33901
-
Xu, Z., Ni, R., & Chen, Y. (2019). Targeting breast cancer stem cells by a self-assembled, aptamer-conjugated DNA nanotrain with preloading doxorubicin.
International journal of nanomedicine,
14, 6831–6842.
https://doi.org/10.2147/IJN.S200482
-
Peng, C., Yu, M., Hsieh, J. T., Kapur, P., & Zheng, J. (2019). Correlating Anticancer Drug Delivery Efficiency with Vascular Permeability of Renal Clearable Versus Non-renal Clearable Nanocarriers.
Angewandte Chemie (International ed. in English),
58(35), 12076–12080.
https://doi.org/10.1002/anie.201905738
-
Yong, T., Zhang, X., Bie, N., Zhang, H., Zhang, X., Li, F., Hakeem, A., Hu, J., Gan, L., Santos, H. A., & Yang, X. (2019). Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy.
Nature communications,
10(1), 3838.
https://doi.org/10.1038/s41467-019-11718-4
-
Mohammad, O., Faisal, S. M., Ahmad, N., Rauf, M. A., Umar, M. S., Mujeeb, A. A., Pachauri, P., Ahmed, A., Kashif, M., Ajmal, M., & Zubair, S. (2019). Bio-mediated synthesis of 5-FU based nanoparticles employing orange fruit juice: a novel drug delivery system to treat skin fibrosarcoma in model animals.
Scientific reports,
9(1), 12288.
https://doi.org/10.1038/s41598-019-48180-7
-
Ebadi, M., Saifullah, B., Buskaran, K., Hussein, M. Z., & Fakurazi, S. (2019). Synthesis and properties of magnetic nanotheranostics coated with polyethylene glycol/5-fluorouracil/layered double hydroxide.
International journal of nanomedicine,
14, 6661–6678.
https://doi.org/10.2147/IJN.S214923
-
Shi, S., Wen, X., Li, T., Wen, X., Cao, Q., Liu, X., Liu, Y., Pagel, M. D., & Li, C. (2019). Thermosensitive Biodegradable Copper Sulfide Nanoparticles for Real-Time Multispectral Optoacoustic Tomography.
ACS applied bio materials,
2(8), 3203–3211.
https://doi.org/10.1021/acsabm.9b00133
-
Wang, Q. S., Gao, L. N., Zhu, X. N., Zhang, Y., Zhang, C. N., Xu, D., & Cui, Y. L. (2019). Co-delivery of glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the activation of macrophage and enhances the therapeutic efficacy for hepatocellular carcinoma.
Theranostics,
9(21), 6239–6255.
https://doi.org/10.7150/thno.35972
-
Huang, P., Wang, G., Su, Y., Zhou, Y., Huang, W., Zhang, R., & Yan, D. (2019). Stimuli-responsive nanodrug self-assembled from amphiphilic drug-inhibitor conjugate for overcoming multidrug resistance in cancer treatment.
Theranostics,
9(20), 5755–5768.
https://doi.org/10.7150/thno.36163
-
Liu, X., Sun, Y., Xu, S., Gao, X., Kong, F., Xu, K., & Tang, B. (2019). Homotypic Cell Membrane-Cloaked Biomimetic Nanocarrier for the Targeted Chemotherapy of Hepatocellular Carcinoma.
Theranostics,
9(20), 5828–5838.
https://doi.org/10.7150/thno.34837
-
Abumanhal-Masarweh, H., da Silva, D., Poley, M., Zinger, A., Goldman, E., Krinsky, N., Kleiner, R., Shenbach, G., Schroeder, J. E., Shklover, J., Shainsky-Roitman, J., & Schroeder, A. (2019). Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells.
Journal of controlled release : official journal of the Controlled Release Society,
307, 331–341.
https://doi.org/10.1016/j.jconrel.2019.06.025
-
Lakkadwala, S., Dos Santos Rodrigues, B., Sun, C., & Singh, J. (2019). Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma.
Journal of controlled release : official journal of the Controlled Release Society,
307, 247–260.
https://doi.org/10.1016/j.jconrel.2019.06.033
-
Kumar, R., Singh, A., & Garg, N. (2019). Acoustic Cavitation-Assisted Formulation of Solid Lipid Nanoparticles using Different Stabilizers.
ACS omega,
4(8), 13360–13370.
https://doi.org/10.1021/acsomega.9b01532
-
Cao, Z., Cheng, S., Wang, X., Pang, Y., & Liu, J. (2019). Camouflaging bacteria by wrapping with cell membranes.
Nature communications,
10(1), 3452.
https://doi.org/10.1038/s41467-019-11390-8
-
Pandya, A. D., Jäger, E., Bagheri Fam, S., Höcherl, A., Jäger, A., Sincari, V., Nyström, B., Štěpánek, P., Skotland, T., Sandvig, K., Hrubý, M., & Mælandsmo, G. M. (2019). Paclitaxel-loaded biodegradable ROS-sensitive nanoparticles for cancer therapy.
International journal of nanomedicine,
14, 6269–6285.
https://doi.org/10.2147/IJN.S208938
-
-
Kwon, S., Yoo, K. H., Sym, S. J., & Khang, D. (2019). Mesenchymal stem cell therapy assisted by nanotechnology: a possible combinational treatment for brain tumor and central nerve regeneration.
International journal of nanomedicine,
14, 5925–5942.
https://doi.org/10.2147/IJN.S217923
-
-
Navya, P. N., Kaphle, A., Srinivas, S. P., Bhargava, S. K., Rotello, V. M., & Daima, H. K. (2019). Current trends and challenges in cancer management and therapy using designer nanomaterials.
Nano convergence,
6(1), 23.
https://doi.org/10.1186/s40580-019-0193-2
-
Nunes, T., Pons, T., Hou, X., Van Do, K., Caron, B., Rigal, M., Di Benedetto, M., Palpant, B., Leboeuf, C., Janin, A., & Bousquet, G. (2019). Pulsed-laser irradiation of multifunctional gold nanoshells to overcome trastuzumab resistance in HER2-overexpressing breast cancer.
Journal of experimental & clinical cancer research : CR,
38(1), 306.
https://doi.org/10.1186/s13046-019-1305-x
-
Li, J., Gu, Y., Zhang, W., Bao, C. Y., Li, C. R., Zhang, J. Y., Liu, T., Li, S., Huang, J. X., Xie, Z. G., Hua, S. C., & Wan, Y. (2019). Molecular Mechanism for Selective Cytotoxicity towards Cancer Cells of Diselenide-Containing Paclitaxel Nanoparticles.
International journal of biological sciences,
15(8), 1755–1770.
https://doi.org/10.7150/ijbs.34878
-
Nik, M. E., Malaekeh-Nikouei, B., Amin, M., Hatamipour, M., Teymouri, M., Sadeghnia, H. R., Iranshahi, M., & Jaafari, M. R. (2019). Liposomal formulation of Galbanic acid improved therapeutic efficacy of pegylated liposomal Doxorubicin in mouse colon carcinoma.
Scientific reports,
9(1), 9527.
https://doi.org/10.1038/s41598-019-45974-7
-
Mulder, W., Ochando, J., Joosten, L., Fayad, Z. A., & Netea, M. G. (2019). Therapeutic targeting of trained immunity.
Nature reviews. Drug discovery,
18(7), 553–566.
https://doi.org/10.1038/s41573-019-0025-4
-
Xia, Q., Zhang, Y., Li, Z., Hou, X., & Feng, N. (2019). Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application.
Acta pharmaceutica Sinica. B,
9(4), 675–689.
https://doi.org/10.1016/j.apsb.2019.01.011
-
Soleimani, N., Vaseghi, A., & Loconte, V. (2019). Poliglusam Nanoparticles Activate T Cell Response in Breast Cancer Cell: an In Vivo and In Vitro Study.
Journal of fluorescence,
29(4), 1057–1064.
https://doi.org/10.1007/s10895-019-02423-y
-
Shao, Y., Luo, W., Guo, Q., Li, X., Zhang, Q., & Li, J. (2019). In vitro and in vivo effect of hyaluronic acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nano-system for leukemia therapy.
Drug design, development and therapy,
13, 2043–2055.
https://doi.org/10.2147/DDDT.S202818
-
Madurantakam Royam, M., Ramesh, R., Shanker, R., Sabarimurugan, S., Kumarasamy, C., Ramesh, N., Gothandam, K. M., Baxi, S., Gupta, A., Krishnan, S., & Jayaraj, R. (2019). miRNA Predictors of Pancreatic Cancer Chemotherapeutic Response: A Systematic Review and Meta-Analysis.
Cancers,
11(7), 900.
https://doi.org/10.3390/cancers11070900
-
Deng, H., , Dutta, P., , & Liu, J., (2019). Entry modes of ellipsoidal nanoparticles on a membrane during clathrin-mediated endocytosis.
Soft matter,
15(25), 5128–5137.
https://doi.org/10.1039/c9sm00751b
-
Li, Y., Dang, J., Liang, Q., & Yin, L. (2019). Thermal-Responsive Carbon Monoxide (CO) Delivery Expedites Metabolic Exhaustion of Cancer Cells toward Reversal of Chemotherapy Resistance.
ACS central science,
5(6), 1044–1058.
https://doi.org/10.1021/acscentsci.9b00216
-
Chen, X., Li, R., Wong, S., Wei, K., Cui, M., Chen, H., Jiang, Y., Yang, B., Zhao, P., Xu, J., Chen, H., Yin, C., Lin, S., Lee, W. Y., Jing, Y., Li, Z., Yang, Z., Xia, J., Chen, G., Li, G., … Bian, L. (2019). Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells.
Nature communications,
10(1), 2705.
https://doi.org/10.1038/s41467-019-10640-z
-
-
Zi, C. T., Gao, Y. S., Yang, L., Feng, S. Y., Huang, Y., Sun, L., Jin, Y., Xu, F. Q., Dong, F. W., Li, Y., Ding, Z. T., Zhou, J., Jiang, Z. H., Yuan, S. T., & Hu, J. M. (2019). Design, Synthesis, and Biological Evaluation of Novel Biotinylated Podophyllotoxin Derivatives as Potential Antitumor Agents.
Frontiers in chemistry,
7, 434.
https://doi.org/10.3389/fchem.2019.00434
-
Sánchez-López, E., Guerra, M., Dias-Ferreira, J., Lopez-Machado, A., Ettcheto, M., Cano, A., Espina, M., Camins, A., Garcia, M. L., & Souto, E. B. (2019). Current Applications of Nanoemulsions in Cancer Therapeutics.
Nanomaterials (Basel, Switzerland),
9(6), 821.
https://doi.org/10.3390/nano9060821
-
Fischer, J., Beckers, S. J., Yiamsawas, D., Thines, E., Landfester, K., & Wurm, F. R. (2019). Targeted Drug Delivery in Plants: Enzyme-Responsive Lignin Nanocarriers for the Curative Treatment of the Worldwide Grapevine Trunk Disease Esca.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
6(15), 1802315.
https://doi.org/10.1002/advs.201802315
-
Li, Y., Zhang, T., Liu, Q., Zhang, J., Li, R., Pu, S., Wu, T., Ma, L., & He, J. (2019). Mixed micelles loaded with the 5-benzylidenethiazolidine-2,4-dione derivative SKLB023 for efficient treatment of non-alcoholic steatohepatitis.
International journal of nanomedicine,
14, 3943–3953.
https://doi.org/10.2147/IJN.S202821
-
Zhao, M., Cui, Y., Zhao, L., Zhu, T., Lee, R. J., Liao, W., Sun, F., Li, Y., & Teng, L. (2019). Thiophene Derivatives as New Anticancer Agents and Their Therapeutic Delivery Using Folate Receptor-Targeting Nanocarriers.
ACS omega,
4(5), 8874–8880.
https://doi.org/10.1021/acsomega.9b00554
-
Wang, S., Qin, L., Yamankurt, G., Skakuj, K., Huang, Z., Chen, P. C., Dominguez, D., Lee, A., Zhang, B., & Mirkin, C. A. (2019). Rational vaccinology with spherical nucleic acids.
Proceedings of the National Academy of Sciences of the United States of America,
116(21), 10473–10481.
https://doi.org/10.1073/pnas.1902805116
-
Lee, Y. W., Luther, D. C., Kretzmann, J. A., Burden, A., Jeon, T., Zhai, S., & Rotello, V. M. (2019). Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers.
Theranostics,
9(11), 3280–3292.
https://doi.org/10.7150/thno.34412
-
Li, S., Zou, Q., Xing, R., Govindaraju, T., Fakhrullin, R., & Yan, X. (2019). Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics.
Theranostics,
9(11), 3249–3261.
https://doi.org/10.7150/thno.31814
-
Hoang, N. H., Sim, T., Lim, C., Le, T. N., Han, S. M., Lee, E. S., Youn, Y. S., & Oh, K. T. (2019). A nano-sized blending system comprising identical triblock copolymers with different hydrophobicity for fabrication of an anticancer drug nanovehicle with high stability and solubilizing capacity.
International journal of nanomedicine,
14, 3629–3644.
https://doi.org/10.2147/IJN.S191126
-
Zhu, Y. H., Ye, N., Tang, X. F., Khan, M. I., Liu, H. L., Shi, N., & Hang, L. F. (2019). Synergistic Effect of Retinoic Acid Polymeric Micelles and Prodrug for the Pharmacodynamic Evaluation of Tumor Suppression.
Frontiers in pharmacology,
10, 447.
https://doi.org/10.3389/fphar.2019.00447
-
Zottel, A., Videtič Paska, A., & Jovčevska, I. (2019). Nanotechnology Meets Oncology: Nanomaterials in Brain Cancer Research, Diagnosis and Therapy.
Materials (Basel, Switzerland),
12(10), 1588.
https://doi.org/10.3390/ma12101588
-
Maslanka Figueroa, S., Veser, A., Abstiens, K., Fleischmann, D., Beck, S., & Goepferich, A. (2019). Influenza A virus mimetic nanoparticles trigger selective cell uptake.
Proceedings of the National Academy of Sciences of the United States of America,
116(20), 9831–9836.
https://doi.org/10.1073/pnas.1902563116
-
Wathiong, B., Deville, S., Jacobs, A., Smisdom, N., Gervois, P., Lambrichts, I., Ameloot, M., Hooyberghs, J., & Nelissen, I. (2019). Role of nanoparticle size and sialic acids in the distinct time-evolution profiles of nanoparticle uptake in hematopoietic progenitor cells and monocytes.
Journal of nanobiotechnology,
17(1), 62.
https://doi.org/10.1186/s12951-019-0495-x
-
Iturrioz-Rodríguez, N., Correa-Duarte, M. A., & Fanarraga, M. L. (2019). Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles.
International journal of nanomedicine,
14, 3389–3401.
https://doi.org/10.2147/IJN.S198848
-
Bandyopadhyay, A., Yadav, P., Sarkar, K., & Bhattacharyya, S. (2019). The destructive spontaneous ingression of tunable silica nanosheets through cancer cell membranes.
Chemical science,
10(24), 6184–6192.
https://doi.org/10.1039/c9sc00076c
-
González-Ayón, M. A., Licea-Claveríe, Á., Valdez-Torres, J. B., Picos-Corrales, L. A., Vélez-de la Rocha, R., Contreras-Esquivel, J. C., Labavitch, J. M., & Sañudo-Barajas, J. A. (2019). Enzyme-Catalyzed Production of Potato Galactan-Oligosaccharides and Its Optimization by Response Surface Methodology.
Materials (Basel, Switzerland),
12(9), 1465.
https://doi.org/10.3390/ma12091465
-
Li, B., & Lane, L. A. (2019). Probing the biological obstacles of nanomedicine with gold nanoparticles.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology,
11(3), e1542.
https://doi.org/10.1002/wnan.1542
-
Sahu, P., Kashaw, S. K., Sau, S., Kushwah, V., Jain, S., Agrawal, R. K., & Iyer, A. K. (2019). pH triggered and charge attracted nanogel for simultaneous evaluation of penetration and toxicity against skin cancer: In-vitro and ex-vivo study.
International journal of biological macromolecules,
128, 740–751.
https://doi.org/10.1016/j.ijbiomac.2019.01.147
-
-
-
Akhtar, A., Ghali, L., Wang, S. X., Bell, C., Li, D., & Wen, X. (2019). Optimisation of Folate-Mediated Liposomal Encapsulated Arsenic Trioxide for Treating HPV-Positive Cervical Cancer Cells In Vitro.
International journal of molecular sciences,
20(9), 2156.
https://doi.org/10.3390/ijms20092156
-
Wang, Y., Zhang, K., Qin, X., Li, T., Qiu, J., Yin, T., Huang, J., McGinty, S., Pontrelli, G., Ren, J., Wang, Q., Wu, W., & Wang, G. (2019). Biomimetic Nanotherapies: Red Blood Cell Based Core-Shell Structured Nanocomplexes for Atherosclerosis Management.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
6(12), 1900172.
https://doi.org/10.1002/advs.201900172
-
Vankayala, R., , Mac, J. T., , Burns, J. M., , Dunn, E., , Carroll, S., , Bahena, E. M., , Patel, D. K., , Griffey, S., , & Anvari, B., (2019). Biodistribution and toxicological evaluation of micron- and nano-sized erythrocyte-derived optical particles in healthy Swiss Webster mice.
Biomaterials science,
7(5), 2123–2133.
https://doi.org/10.1039/c8bm01448e
-
Alvaradejo, G. G., Nguyen, H. V., Harvey, P., Gallagher, N. M., Le, D., Ottaviani, M. F., Jasanoff, A., Delaittre, G., & Johnson, J. A. (2019). Polyoxazoline-Based Bottlebrush and Brush-Arm Star Polymers via ROMP: Syntheses and Applications as Organic Radical Contrast Agents.
ACS macro letters,
8(4), 473–478.
https://doi.org/10.1021/acsmacrolett.9b00016
-
Busatto, S., Pham, A., Suh, A., Shapiro, S., & Wolfram, J. (2019). Organotropic drug delivery: Synthetic nanoparticles and extracellular vesicles.
Biomedical microdevices,
21(2), 46.
https://doi.org/10.1007/s10544-019-0396-7
-
Zhang, Q., Chen, J., Shen, J., Chen, S., Liang, K., Wang, H., & Chen, H. (2019). Inlaying Radiosensitizer onto the Polypeptide Shell of Drug-Loaded Ferritin for Imaging and Combinational Chemo-Radiotherapy.
Theranostics,
9(10), 2779–2790.
https://doi.org/10.7150/thno.33472
-
Nguyen, V. P., Li, Y., Qian, W., Liu, B., Tian, C., Zhang, W., Huang, Z., Ponduri, A., Tarnowski, M., Wang, X., & Paulus, Y. M. (2019). Contrast Agent Enhanced Multimodal Photoacoustic Microscopy and Optical Coherence Tomography for Imaging of Rabbit Choroidal and Retinal Vessels in vivo.
Scientific reports,
9(1), 5945.
https://doi.org/10.1038/s41598-019-42324-5
-
Xia, K. K., Lyu, Y., Yuan, W. T., Wang, G. X., Stratton, H., Zhang, S. J., & Wu, J. (2019). Nanocarriers of Fe3O4 as a Novel Method for Delivery of the Antineoplastic Agent Doxorubicin Into HeLa Cells
in vitro.
Frontiers in oncology,
9, 250.
https://doi.org/10.3389/fonc.2019.00250
-
Farokhirad, S., , Ranganathan, A., , Myerson, J., , Muzykantov, V. R., , Ayyaswamy, P. S., , Eckmann, D. M., , & Radhakrishnan, R., (2019). Stiffness can mediate balance between hydrodynamic forces and avidity to impact the targeting of flexible polymeric nanoparticles in flow.
Nanoscale,
11(14), 6916–6928.
https://doi.org/10.1039/c8nr09594a
-
Wallyn, J., Anton, N., Akram, S., & Vandamme, T. F. (2019). Biomedical Imaging: Principles, Technologies, Clinical Aspects, Contrast Agents, Limitations and Future Trends in Nanomedicines.
Pharmaceutical research,
36(6), 78.
https://doi.org/10.1007/s11095-019-2608-5
-
Tyo, K. M., Minooei, F., Curry, K. C., NeCamp, S. M., Graves, D. L., Fried, J. R., & Steinbach-Rankins, J. M. (2019). Relating Advanced Electrospun Fiber Architectures to the Temporal Release of Active Agents to Meet the Needs of Next-Generation Intravaginal Delivery Applications.
Pharmaceutics,
11(4), 160.
https://doi.org/10.3390/pharmaceutics11040160
-
Zheng, T., Feng, H., Liu, L., Peng, J., Xiao, H., Yu, T., Zhou, Z., Li, Y., Zhang, Y., Bai, X., Zhao, S., Shi, Y., & Chen, Y. (2019). Enhanced antiproliferative effect of resveratrol in head and neck squamous cell carcinoma using GE11 peptide conjugated liposome.
International journal of molecular medicine,
43(4), 1635–1642.
https://doi.org/10.3892/ijmm.2019.4096
-
Liyanage, P. Y., Hettiarachchi, S. D., Zhou, Y., Ouhtit, A., Seven, E. S., Oztan, C. Y., Celik, E., & Leblanc, R. M. (2019). Nanoparticle-mediated targeted drug delivery for breast cancer treatment.
Biochimica et biophysica acta. Reviews on cancer,
1871(2), 419–433.
https://doi.org/10.1016/j.bbcan.2019.04.006
-
DuRoss, A. N., Neufeld, M. J., Rana, S., Thomas, C. R., Jr, & Sun, C. (2019). Integrating nanomedicine into clinical radiotherapy regimens.
Advanced drug delivery reviews,
144, 35–56.
https://doi.org/10.1016/j.addr.2019.07.002
-
Ben-David-Naim, M., Dagan, A., Grad, E., Aizik, G., Nordling-David, M. M., Morss Clyne, A., Granot, Z., & Golomb, G. (2019). Targeted siRNA Nanoparticles for Mammary Carcinoma Therapy.
Cancers,
11(4), 442.
https://doi.org/10.3390/cancers11040442
-
Hettiarachchi, S. D., , Graham, R. M., , Mintz, K. J., , Zhou, Y., , Vanni, S., , Peng, Z., , & Leblanc, R. M., (2019). Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors.
Nanoscale,
11(13), 6192–6205.
https://doi.org/10.1039/c8nr08970a
-
Martinelli, C., Pucci, C., & Ciofani, G. (2019). Nanostructured carriers as innovative tools for cancer diagnosis and therapy.
APL bioengineering,
3(1), 011502.
https://doi.org/10.1063/1.5079943
-
Ganugula, R., Deng, M., Arora, M., Pan, H. L., & Kumar, M. (2019). Polyester Nanoparticle Encapsulation Mitigates Paclitaxel-Induced Peripheral Neuropathy.
ACS chemical neuroscience,
10(3), 1801–1812.
https://doi.org/10.1021/acschemneuro.8b00703
-
Lim, J. M., Cai, T., Mandaric, S., Chopra, S., Han, H., Jang, S., Il Choi, W., Langer, R., Farokhzad, O. C., & Karnik, R. (2019). Drug loading augmentation in polymeric nanoparticles using a coaxial turbulent jet mixer: Yong investigator perspective.
Journal of colloid and interface science,
538, 45–50.
https://doi.org/10.1016/j.jcis.2018.11.029
-
Gujrati, V., Prakash, J., Malekzadeh-Najafabadi, J., Stiel, A., Klemm, U., Mettenleiter, G., Aichler, M., Walch, A., & Ntziachristos, V. (2019). Bioengineered bacterial vesicles as biological nano-heaters for optoacoustic imaging.
Nature communications,
10(1), 1114.
https://doi.org/10.1038/s41467-019-09034-y
-
He, W., Wang, S., Yan, J., Qu, Y., Jin, L., Sui, F., Li, Y., You, W., Yang, G., Yang, Q., Ji, M., Shao, Y., Ma, P. X., Lu, W., & Hou, P. (2019). Self-Assembly of Therapeutic Peptide into Stimuli-Responsive Clustered Nanohybrids for Cancer-Targeted Therapy.
Advanced functional materials,
29(10), 1807736.
https://doi.org/10.1002/adfm.201807736
-
Saha Ray, A., Ghann, W. E., Tsoi, P. S., Szychowski, B., Dockery, L. T., Pak, Y. J., Li, W., Kane, M. A., Swaan, P., & Daniel, M. C. (2019). Set of Highly Stable Amine- and Carboxylate-Terminated Dendronized Au Nanoparticles with Dense Coating and Nontoxic Mixed-Dendronized Form.
Langmuir : the ACS journal of surfaces and colloids,
35(9), 3391–3403.
https://doi.org/10.1021/acs.langmuir.8b03196
-
Simon, A. T., Dutta, D., Chattopadhyay, A., & Ghosh, S. S. (2019). Copper Nanocluster-Doped Luminescent Hydroxyapatite Nanoparticles for Antibacterial and Antibiofilm Applications.
ACS omega,
4(3), 4697–4706.
https://doi.org/10.1021/acsomega.8b03076
-
Jones, S. J., Taylor, A. F., & Beales, P. A. (2019). Towards feedback-controlled nanomedicines for smart, adaptive delivery.
Experimental biology and medicine (Maywood, N.J.),
244(4), 283–293.
https://doi.org/10.1177/1535370218800456
-
Yanagihara, K., Kubo, T., Mihara, K., Kuwata, T., Ochiai, A., Seyama, T., & Yokozaki, H. (2019). Development and Biological Analysis of a Novel Orthotopic Peritoneal Dissemination Mouse Model Generated Using a Pancreatic Ductal Adenocarcinoma Cell Line.
Pancreas,
48(3), 315–322.
https://doi.org/10.1097/MPA.0000000000001253
-
Maksimović-Ivanić, D., Bulatović, M., Edeler, D., Bensing, C., Golić, I., Korać, A., Kaluđerović, G. N., & Mijatović, S. (2019). The interaction between SBA-15 derivative loaded with Ph3Sn(CH2)6OH and human melanoma A375 cell line: uptake and stem phenotype loss.
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry,
24(2), 223–234.
https://doi.org/10.1007/s00775-019-01640-x
-
Liu, X., Wang, B., Li, Y., Hu, Y., Li, X., Yu, T., Ju, Y., Sun, T., Gao, X., & Wei, Y. (2019). Powerful Anticolon Tumor Effect of Targeted Gene Immunotherapy Using Folate-Modified Nanoparticle Delivery of CCL19 To Activate the Immune System.
ACS central science,
5(2), 277–289.
https://doi.org/10.1021/acscentsci.8b00688
-
Estabrook, D. A., Ennis, A. F., Day, R. A., & Sletten, E. M. (2019). Controlling nanoemulsion surface chemistry with poly(2-oxazoline) amphiphiles.
Chemical science,
10(14), 3994–4003.
https://doi.org/10.1039/c8sc05735d
-
Gardinier, T. C., Kohle, F., Peerless, J. S., Ma, K., Turker, M. Z., Hinckley, J. A., Yingling, Y. G., & Wiesner, U. (2019). High-Performance Chromatographic Characterization of Surface Chemical Heterogeneities of Fluorescent Organic-Inorganic Hybrid Core-Shell Silica Nanoparticles.
ACS nano,
13(2), 1795–1804.
https://doi.org/10.1021/acsnano.8b07876
-
Sun, J. G., Jiang, Q., Zhang, X. P., Shan, K., Liu, B. H., Zhao, C., & Yan, B. (2019). Mesoporous silica nanoparticles as a delivery system for improving antiangiogenic therapy.
International journal of nanomedicine,
14, 1489–1501.
https://doi.org/10.2147/IJN.S195504
-
Huang, Y. H., Vakili, M. R., Molavi, O., Morrissey, Y., Wu, C., Paiva, I., Soleimani, A. H., Sanaee, F., Lavasanifar, A., & Lai, R. (2019). Decoration of Anti-CD38 on Nanoparticles Carrying a STAT3 Inhibitor Can Improve the Therapeutic Efficacy Against Myeloma.
Cancers,
11(2), 248.
https://doi.org/10.3390/cancers11020248
-
Foster, J. C., Carrazzone, R. J., Spear, N. J., Radzinski, S. C., Arrington, K. J., & Matson, J. B. (2019). Tuning H2S Release by Controlling Mobility in a Micelle Core.
Macromolecules,
52(3), 1104–1111.
https://doi.org/10.1021/acs.macromol.8b02315
-
Mo, L., Zhao, Z., Hu, X., Yu, X., Peng, Y., Liu, H., Xiong, M., Fu, T., Jiang, Y., Zhang, X., & Tan, W. (2019). Smart Nanodrug with Nuclear Localization Sequences in the Presence of MMP-2 To Overcome Biobarriers and Drug Resistance.
Chemistry (Weinheim an der Bergstrasse, Germany),
25(8), 1895–1900.
https://doi.org/10.1002/chem.201805107
-
Sexton, R. E., Mpilla, G., Kim, S., Philip, P. A., & Azmi, A. S. (2019). Ras and exosome signaling.
Seminars in cancer biology,
54, 131–137.
https://doi.org/10.1016/j.semcancer.2019.02.004
-
Elkassih, S. A., , Kos, P., , Xiong, H., , & Siegwart, D. J., (2019). Degradable redox-responsive disulfide-based nanogel drug carriers via dithiol oxidation polymerization.
Biomaterials science,
7(2), 607–617.
https://doi.org/10.1039/c8bm01120f
-
Satpathy, M., Wang, L., Zielinski, R. J., Qian, W., Wang, Y. A., Mohs, A. M., Kairdolf, B. A., Ji, X., Capala, J., Lipowska, M., Nie, S., Mao, H., & Yang, L. (2019). Targeted Drug Delivery and Image-Guided Therapy of Heterogeneous Ovarian Cancer Using HER2-Targeted Theranostic Nanoparticles.
Theranostics,
9(3), 778–795.
https://doi.org/10.7150/thno.29964
-
Ferdinandus, & Arai, S. (2019). The ABC Guide to Fluorescent Toolsets for the Development of Future Biomaterials.
Frontiers in bioengineering and biotechnology,
7, 5.
https://doi.org/10.3389/fbioe.2019.00005
-
Ling, X., Tu, J., Wang, J., Shajii, A., Kong, N., Feng, C., Zhang, Y., Yu, M., Xie, T., Bharwani, Z., Aljaeid, B. M., Shi, B., Tao, W., & Farokhzad, O. C. (2019). Glutathione-Responsive Prodrug Nanoparticles for Effective Drug Delivery and Cancer Therapy.
ACS nano,
13(1), 357–370.
https://doi.org/10.1021/acsnano.8b06400
-
Chen, Y., Liu, X., Yuan, H., Yang, Z., von Roemeling, C. A., Qie, Y., Zhao, H., Wang, Y., Jiang, W., & Kim, B. (2019). Therapeutic Remodeling of the Tumor Microenvironment Enhances Nanoparticle Delivery.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
6(5), 1802070.
https://doi.org/10.1002/advs.201802070
-
Wang, S., Wang, Z., Yu, G., Zhou, Z., Jacobson, O., Liu, Y., Ma, Y., Zhang, F., Chen, Z. Y., & Chen, X. (2019). Tumor-Specific Drug Release and Reactive Oxygen Species Generation for Cancer Chemo/Chemodynamic Combination Therapy.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
6(5), 1801986.
https://doi.org/10.1002/advs.201801986
-
Pinguet, C. E., Ryll, E., Steinschulte, A. A., Hoffmann, J. M., Brugnoni, M., Sybachin, A., Wöll, D., Yaroslavov, A., Richtering, W., & Plamper, F. A. (2019). PEO-b-PPO star-shaped polymers enhance the structural stability of electrostatically coupled liposome/polyelectrolyte complexes.
PloS one,
14(1), e0210898.
https://doi.org/10.1371/journal.pone.0210898
-
Caffery, B., Lee, J. S., & Alexander-Bryant, A. A. (2019). Vectors for Glioblastoma Gene Therapy: Viral & Non-Viral Delivery Strategies.
Nanomaterials (Basel, Switzerland),
9(1), 105.
https://doi.org/10.3390/nano9010105
-
Ghosh, S., Qi, R., Carter, K. A., Zhang, G., Pfeifer, B. A., & Lovell, J. F. (2019). Loading and Releasing Ciprofloxacin in Photoactivatable Liposomes.
Biochemical engineering journal,
141, 43–48.
https://doi.org/10.1016/j.bej.2018.10.008
-
Mi, Y., Hagan, C. T., 4th, Vincent, B. G., & Wang, A. Z. (2019). Emerging Nano-/Microapproaches for Cancer Immunotherapy.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
6(6), 1801847.
https://doi.org/10.1002/advs.201801847
-
Lunova, M., Smolková, B., Lynnyk, A., Uzhytchak, M., Jirsa, M., Kubinová, Š., Dejneka, A., & Lunov, O. (2019). Targeting the mTOR Signaling Pathway Utilizing Nanoparticles: A Critical Overview.
Cancers,
11(1), 82.
https://doi.org/10.3390/cancers11010082
-
Maziukiewicz, D., Grześkowiak, B. F., Coy, E., Jurga, S., & Mrówczyński, R. (2019). NDs@PDA@ICG Conjugates for Photothermal Therapy of Glioblastoma Multiforme.
Biomimetics (Basel, Switzerland),
4(1), 3.
https://doi.org/10.3390/biomimetics4010003
-
Song, C., Lin, T., Zhang, Q., Thayumanavan, S., & Ren, L. (2019). pH-Sensitive morphological transitions in polymeric tadpole assemblies for programmed tumor therapy.
Journal of controlled release : official journal of the Controlled Release Society,
293, 1–9.
https://doi.org/10.1016/j.jconrel.2018.10.033
-
Jang, J. D., Do, C., Bang, J., Han, Y. S., & Kim, T. H. (2019). Self-Assembly of Temperature Sensitive Unilamellar Vesicles by a Blend of Block Copolymers in Aqueous Solution.
Polymers,
11(1), 63.
https://doi.org/10.3390/polym11010063
-
Sun, Q., , Barz, M., , De Geest, B. G., , Diken, M., , Hennink, W. E., , Kiessling, F., , Lammers, T., , & Shi, Y., (2019). Nanomedicine and macroscale materials in immuno-oncology.
Chemical Society reviews,
48(1), 351–381.
https://doi.org/10.1039/c8cs00473k
-
Lakkadwala, S., & Singh, J. (2019). Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model.
Colloids and surfaces. B, Biointerfaces,
173, 27–35.
https://doi.org/10.1016/j.colsurfb.2018.09.047
-
Starling, B. R., Kumar, P., Lucas, A. T., Barrow, D., Farnan, L., Hendrix, L., Giovinazzo, H., Song, G., Gehrig, P., Bensen, J. T., & Zamboni, W. C. (2019). Mononuclear phagocyte system function and nanoparticle pharmacology in obese and normal weight ovarian and endometrial cancer patients.
Cancer chemotherapy and pharmacology,
83(1), 61–70.
https://doi.org/10.1007/s00280-018-3702-9
-
Lopez-Campos, F., Candini, D., Carrasco, E., & Berenguer Francés, M. A. (2019). Nanoparticles applied to cancer immunoregulation.
Reports of practical oncology and radiotherapy : journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology,
24(1), 47–55.
https://doi.org/10.1016/j.rpor.2018.10.001
-
Cheng, Y., Ou, Z., Li, Q., Yang, J., Hu, M., Zhou, Y., Zhuang, X., Zhang, Z. J., & Guan, S. (2019). Cabazitaxel liposomes with aptamer modification enhance tumor‑targeting efficacy in nude mice.
Molecular medicine reports,
19(1), 490–498.
https://doi.org/10.3892/mmr.2018.9689
-
Morales-Orue, I., Chicas-Sett, R., & Lara, P. C. (2019). Nanoparticles as a promising method to enhance the abscopal effect in the era of new targeted therapies.
Reports of practical oncology and radiotherapy : journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology,
24(1), 86–91.
https://doi.org/10.1016/j.rpor.2018.11.001
-
Benchimol, M. J., Bourne, D., Moghimi, S. M., & Simberg, D. (2019). Pharmacokinetic analysis reveals limitations and opportunities for nanomedicine targeting of endothelial and extravascular compartments of tumours.
Journal of drug targeting,
27(5-6), 690–698.
https://doi.org/10.1080/1061186X.2019.1566339
-
Ravindran Girija, A., & Balasubramanian, S. (2019). Theragnostic potentials of core/shell mesoporous silica nanostructures.
Nanotheranostics,
3(1), 1–40.
https://doi.org/10.7150/ntno.27877
-
Ghosn, Y., Kamareddine, M. H., Tawk, A., Elia, C., El Mahmoud, A., Terro, K., El Harake, N., El-Baba, B., Makdessi, J., & Farhat, S. (2019). Inorganic Nanoparticles as Drug Delivery Systems and Their Potential Role in the Treatment of Chronic Myelogenous Leukaemia.
Technology in cancer research & treatment,
18, 1533033819853241.
https://doi.org/10.1177/1533033819853241
-
Wieland, K., Ramer, G., Weiss, V. U., Allmaier, G., Lendl, B., & Centrone, A. (2019). Nanoscale Chemical Imaging of Individual, Chemotherapeutic Cytarabine-loaded Liposomal Nanocarriers.
Nano research,
12, 10.1007/s12274-018-2202-x.
https://doi.org/10.1007/s12274-018-2202-x
-
-
Hussein Kamareddine, M., Ghosn, Y., Tawk, A., Elia, C., Alam, W., Makdessi, J., & Farhat, S. (2019). Organic Nanoparticles as Drug Delivery Systems and Their Potential Role in the Treatment of Chronic Myeloid Leukemia.
Technology in cancer research & treatment,
18, 1533033819879902.
https://doi.org/10.1177/1533033819879902
-
Giuliano, E., Paolino, D., Fresta, M., & Cosco, D. (2018). Drug-Loaded Biocompatible Nanocarriers Embedded in Poloxamer 407 Hydrogels as Therapeutic Formulations.
Medicines (Basel, Switzerland),
6(1), 7.
https://doi.org/10.3390/medicines6010007
-
Aung, W., Tsuji, A. B., Sugyo, A., Takashima, H., Yasunaga, M., Matsumura, Y., & Higashi, T. (2018). Near-infrared photoimmunotherapy of pancreatic cancer using an indocyanine green-labeled anti-tissue factor antibody.
World journal of gastroenterology,
24(48), 5491–5504.
https://doi.org/10.3748/wjg.v24.i48.5491
-
Tang, H., Zhao, W., Yu, J., Li, Y., & Zhao, C. (2018). Recent Development of pH-Responsive Polymers for Cancer Nanomedicine.
Molecules (Basel, Switzerland),
24(1), 4.
https://doi.org/10.3390/molecules24010004
-
Cirri, M., Maestrelli, F., Mura, P., Ghelardini, C., & Di Cesare Mannelli, L. (2018). Combined Approach of Cyclodextrin Complexationand Nanostructured Lipid Carriers for the Development of a Pediatric Liquid Oral Dosage Form of Hydrochlorothiazide.
Pharmaceutics,
10(4), 287.
https://doi.org/10.3390/pharmaceutics10040287
-
Dai, L., Li, X., Duan, X., Li, M., Niu, P., Xu, H., Cai, K., & Yang, H. (2018). A pH/ROS Cascade-Responsive Charge-Reversal Nanosystem with Self-Amplified Drug Release for Synergistic Oxidation-Chemotherapy.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
6(4), 1801807.
https://doi.org/10.1002/advs.201801807
-
Viseu, T., Lopes, C. M., Fernandes, E., Oliveira, M., & Lúcio, M. (2018). A Systematic Review and Critical Analysis of the Role of Graphene-Based Nanomaterialsin Cancer Theranostics.
Pharmaceutics,
10(4), 282.
https://doi.org/10.3390/pharmaceutics10040282
-
Nunes, T., Hamdan, D., Leboeuf, C., El Bouchtaoui, M., Gapihan, G., Nguyen, T. T., Meles, S., Angeli, E., Ratajczak, P., Lu, H., Di Benedetto, M., Bousquet, G., & Janin, A. (2018). Targeting Cancer Stem Cells to Overcome Chemoresistance.
International journal of molecular sciences,
19(12), 4036.
https://doi.org/10.3390/ijms19124036
-
Han, Y., Liu, W., Huang, J., Qiu, S., Zhong, H., Liu, D., & Liu, J. (2018). Cyclodextrin-Based Metal-Organic Frameworks (CD-MOFs) in Pharmaceutics and Biomedicine.
Pharmaceutics,
10(4), 271.
https://doi.org/10.3390/pharmaceutics10040271
-
Kanubaddi, K. R., Yang, S. H., Wu, L. W., Lee, C. H., & Weng, C. F. (2018). Nanoparticle-conjugated nutraceuticals exert prospectively palliative of amyloid aggregation.
International journal of nanomedicine,
13, 8473–8485.
https://doi.org/10.2147/IJN.S179484
-
Xu, J., Lee, S. S., Seo, H., Pang, L., Jun, Y., Zhang, R. Y., Zhang, Z. Y., Kim, P., Lee, W., Kron, S. J., & Yeo, Y. (2018). Quinic Acid-Conjugated Nanoparticles Enhance Drug Delivery to Solid Tumors via Interactions with Endothelial Selectins.
Small (Weinheim an der Bergstrasse, Germany),
14(50), e1803601.
https://doi.org/10.1002/smll.201803601
-
Hiremath, C. G., Kariduraganavar, M. Y., & Hiremath, M. B. (2018). Synergistic delivery of 5-fluorouracil and curcumin using human serum albumin-coated iron oxide nanoparticles by folic acid targeting.
Progress in biomaterials,
7(4), 297–306.
https://doi.org/10.1007/s40204-018-0104-3
-
-
Ray, S., Li, Z., Hsu, C. H., Hwang, L. P., Lin, Y. C., Chou, P. T., & Lin, Y. Y. (2018). Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics.
Theranostics,
8(22), 6322–6349.
https://doi.org/10.7150/thno.27828
-
Yu, Z., Zhou, P., Pan, W., Li, N., & Tang, B. (2018). A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis.
Nature communications,
9(1), 5044.
https://doi.org/10.1038/s41467-018-07197-8
-
Cao, S., Abdelmohsen, L., Shao, J., van den Dikkenberg, J., Mastrobattista, E., Williams, D. S., & van Hest, J. (2018). pH-Induced Transformation of Biodegradable Multilamellar Nanovectors for Enhanced Tumor Penetration.
ACS macro letters,
7(11), 1394–1399.
https://doi.org/10.1021/acsmacrolett.8b00807
-
Seidler, C., Zegota, M. M., Raabe, M., Kuan, S. L., Ng, D., & Weil, T. (2018). Dynamic Core-Shell Bioconjugates for Targeted Protein Delivery and Release.
Chemistry, an Asian journal,
13(22), 3474–3479.
https://doi.org/10.1002/asia.201800843
-
Zhou, Y., Zhen, M., Guan, M., Yu, T., Ma, L., Li, W., Zheng, J., Shu, C., & Wang, C. (2018). Amino acid modified [70] fullerene derivatives with high radical scavenging activity as promising bodyguards for chemotherapy protection.
Scientific reports,
8(1), 16573.
https://doi.org/10.1038/s41598-018-34967-7
-
Xin, C., Yao, X., Du, B., Yang, W., Wang, L., Ma, L., & Weng, W. (2018). Stearic Acid-Grafted Chitooligosaccharide Nanomicelle System with Biocleavable Gadolinium Chelates as a Multifunctional Agent for Tumor Imaging and Drug Delivery.
Pharmaceutical research,
36(1), 10.
https://doi.org/10.1007/s11095-018-2530-2
-
Tao, S. C., Rui, B. Y., Wang, Q. Y., Zhou, D., Zhang, Y., & Guo, S. C. (2018). Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds.
Drug delivery,
25(1), 241–255.
https://doi.org/10.1080/10717544.2018.1425774
-
Ma, B., He, L., You, Y., Mo, J., & Chen, T. (2018). Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy.
Drug delivery,
25(1), 293–306.
https://doi.org/10.1080/10717544.2018.1425779
-
Zhang, B., Cheng, G., Zheng, M., Han, J., Wang, B., Li, M., Chen, J., Xiao, T., Zhang, J., Cai, L., Li, S., & Fan, X. (2018). Targeted delivery of doxorubicin by CSA-binding nanoparticles for choriocarcinoma treatment.
Drug delivery,
25(1), 461–471.
https://doi.org/10.1080/10717544.2018.1435750
-
Su, C. Y., Chen, M., Chen, L. C., Ho, Y. S., Ho, H. O., Lin, S. Y., Chuang, K. H., & Sheu, M. T. (2018). Bispecific antibodies (anti-mPEG/anti-HER2) for active tumor targeting of docetaxel (DTX)-loaded mPEGylated nanocarriers to enhance the chemotherapeutic efficacy of HER2-overexpressing tumors.
Drug delivery,
25(1), 1066–1079.
https://doi.org/10.1080/10717544.2018.1466936
-
Sim, T., Kim, J. E., Hoang, N. H., Kang, J. K., Lim, C., Kim, D. S., Lee, E. S., Youn, Y. S., Choi, H. G., Han, H. K., Weon, K. Y., & Oh, K. T. (2018). Development of a docetaxel micellar formulation using poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) with successful reconstitution for tumor targeted drug delivery.
Drug delivery,
25(1), 1362–1371.
https://doi.org/10.1080/10717544.2018.1477865
-
Veloso, D., Benedetti, N., Ávila, R. I., Bastos, T., Silva, T. C., Silva, M., Batista, A. C., Valadares, M. C., & Lima, E. M. (2018). Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity.
Drug delivery,
25(1), 1585–1594.
https://doi.org/10.1080/10717544.2018.1492046
-
Lakkadwala, S., & Singh, J. (2018). Dual Functionalized 5-Fluorouracil Liposomes as Highly Efficient Nanomedicine for Glioblastoma Treatment as Assessed in an In Vitro Brain Tumor Model.
Journal of pharmaceutical sciences,
107(11), 2902–2913.
https://doi.org/10.1016/j.xphs.2018.07.020
-
Bahmani, B., Uehara, M., Jiang, L., Ordikhani, F., Banouni, N., Ichimura, T., Solhjou, Z., Furtmüller, G. J., Brandacher, G., Alvarez, D., von Andrian, U. H., Uchimura, K., Xu, Q., Vohra, I., Yilmam, O. A., Haik, Y., Azzi, J., Kasinath, V., Bromberg, J. S., McGrath, M. M., … Abdi, R. (2018). Targeted delivery of immune therapeutics to lymph nodes prolongs cardiac allograft survival.
The Journal of clinical investigation,
128(11), 4770–4786.
https://doi.org/10.1172/JCI120923
-
Figarol, A., Gibot, L., Golzio, M., Lonetti, B., Mingotaud, A. F., & Rols, M. P. (2018). A journey from the endothelium to the tumor tissue: distinct behavior between PEO-PCL micelles and polymersomes nanocarriers.
Drug delivery,
25(1), 1766–1778.
https://doi.org/10.1080/10717544.2018.1510064
-
Jiang, D., Ge, Z., Im, H. J., England, C. G., Ni, D., Hou, J., Zhang, L., Kutyreff, C. J., Yan, Y., Liu, Y., Cho, S. Y., Engle, J. W., Shi, J., Huang, P., Fan, C., Yan, H., & Cai, W. (2018). DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury.
Nature biomedical engineering,
2(11), 865–877.
https://doi.org/10.1038/s41551-018-0317-8
-
Ioannidis, J., Kim, B., & Trounson, A. (2018). How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation.
Nature biomedical engineering,
2(11), 797–809.
https://doi.org/10.1038/s41551-018-0314-y
-
Arora, K., Herroon, M., Al-Afyouni, M. H., Toupin, N. P., Rohrabaugh, T. N., Jr, Loftus, L. M., Podgorski, I., Turro, C., & Kodanko, J. J. (2018). Catch and Release Photosensitizers: Combining Dual-Action Ruthenium Complexes with Protease Inactivation for Targeting Invasive Cancers.
Journal of the American Chemical Society,
140(43), 14367–14380.
https://doi.org/10.1021/jacs.8b08853
-
Oh, J. Y., Kim, H. S., Palanikumar, L., Go, E. M., Jana, B., Park, S. A., Kim, H. Y., Kim, K., Seo, J. K., Kwak, S. K., Kim, C., Kang, S., & Ryu, J. H. (2018). Cloaking nanoparticles with protein corona shield for targeted drug delivery.
Nature communications,
9(1), 4548.
https://doi.org/10.1038/s41467-018-06979-4
-
Durchschein, C., Hufner, A., Rinner, B., Stallinger, A., Deutsch, A., Lohberger, B., Bauer, R., & Kretschmer, N. (2018). Synthesis of Novel Shikonin Derivatives and Pharmacological Effects of Cyclopropylacetylshikonin on Melanoma Cells.
Molecules (Basel, Switzerland),
23(11), 2820.
https://doi.org/10.3390/molecules23112820
-
Kretschmer, N., Deutsch, A., Durchschein, C., Rinner, B., Stallinger, A., Higareda-Almaraz, J. C., Scheideler, M., Lohberger, B., & Bauer, R. (2018). Comparative Gene Expression Analysis in WM164 Melanoma Cells Revealed That
β-
β-Dimethylacrylshikonin Leads to ROS Generation, Loss of Mitochondrial Membrane Potential, and Autophagy Induction.
Molecules (Basel, Switzerland),
23(11), 2823.
https://doi.org/10.3390/molecules23112823
-
Song, X. R., Li, S. H., Guo, H., You, W., Tu, D., Li, J., Lu, C. H., Yang, H. H., & Chen, X. (2018). Enhancing Antitumor Efficacy by Simultaneous ATP-Responsive Chemodrug Release and Cancer Cell Sensitization Based on a Smart Nanoagent.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
5(12), 1801201.
https://doi.org/10.1002/advs.201801201
-
Bai, D. P., Lin, X. Y., Huang, Y. F., & Zhang, X. F. (2018). Theranostics Aspects of Various Nanoparticles in Veterinary Medicine.
International journal of molecular sciences,
19(11), 3299.
https://doi.org/10.3390/ijms19113299
-
Ding, H., Li, J., Chen, N., Hu, X., Yang, X., Guo, L., Li, Q., Zuo, X., Wang, L., Ma, Y., & Fan, C. (2018). DNA Nanostructure-Programmed Like-Charge Attraction at the Cell-Membrane Interface.
ACS central science,
4(10), 1344–1351.
https://doi.org/10.1021/acscentsci.8b00383
-
Zhou, H., Fan, Z., Li, P. Y., Deng, J., Arhontoulis, D. C., Li, C. Y., Bowne, W. B., & Cheng, H. (2018). Dense and Dynamic Polyethylene Glycol Shells Cloak Nanoparticles from Uptake by Liver Endothelial Cells for Long Blood Circulation.
ACS nano,
12(10), 10130–10141.
https://doi.org/10.1021/acsnano.8b04947
-
Cui, Z., Zhang, Y., Xia, K., Yan, Q., Kong, H., Zhang, J., Zuo, X., Shi, J., Wang, L., Zhu, Y., & Fan, C. (2018). Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors.
Nature communications,
9(1), 4347.
https://doi.org/10.1038/s41467-018-06749-2
-
Yakavets, I., Lassalle, H. P., Scheglmann, D., Wiehe, A., Zorin, V., & Bezdetnaya, L. (2018). Temoporfin-in-Cyclodextrin-in-Liposome-A New Approach for Anticancer Drug Delivery: The Optimization of Composition.
Nanomaterials (Basel, Switzerland),
8(10), 847.
https://doi.org/10.3390/nano8100847
-
Toniolo, G., Efthimiadou, E. K., Kordas, G., & Chatgilialoglu, C. (2018). Development of multi-layered and multi-sensitive polymeric nanocontainers for cancer therapy: in vitro evaluation.
Scientific reports,
8(1), 14704.
https://doi.org/10.1038/s41598-018-32890-5
-
Jeong, M., Kim, H., Kim, S., & Park, J. H. (2018). Liposomal borrelidin for treatment of metastatic breast cancer.
Drug delivery and translational research,
8(5), 1380–1388.
https://doi.org/10.1007/s13346-018-0563-z
-
Kong, T., Hao, L., Wei, Y., Cai, X., & Zhu, B. (2018). Doxorubicin conjugated carbon dots as a drug delivery system for human breast cancer therapy.
Cell proliferation,
51(5), e12488.
https://doi.org/10.1111/cpr.12488
-
Goswami, U., Kandimalla, R., Kalita, S., Chattopadhyay, A., & Ghosh, S. S. (2018). Polyethylene Glycol-Encapsulated Histone Deacetylase Inhibitor Drug-Composite Nanoparticles for Combination Therapy with Artesunate.
ACS omega,
3(9), 11504–11516.
https://doi.org/10.1021/acsomega.8b02105
-
Meisel, C. L., Bainbridge, P., Mitsouras, D., & Wong, J. Y. (2018). Targeted Nanoparticle Binding to Hydroxyapatite in a High Serum Environment for Early Detection of Heart Disease.
ACS applied nano materials,
1(9), 4927–4939.
https://doi.org/10.1021/acsanm.8b01099
-
Burkert, S. C., , Shurin, G. V., , White, D. L., , He, X., , Kapralov, A. A., , Kagan, V. E., , Shurin, M. R., , & Star, A., (2018). Targeting myeloid regulators by paclitaxel-loaded enzymatically degradable nanocups.
Nanoscale,
10(37), 17990–18000.
https://doi.org/10.1039/c8nr04437f
-
Pelivanov, I., Petrova, E., Yoon, S. J., Qian, Z., Guye, K., & O'Donnell, M. (2018). Molecular fingerprinting of nanoparticles in complex media with non-contact photoacoustics: beyond the light scattering limit.
Scientific reports,
8(1), 14425.
https://doi.org/10.1038/s41598-018-32580-2
-
Wu, Y., Ali, M., Dong, B., Han, T., Chen, K., Chen, J., Tang, Y., Fang, N., Wang, F., & El-Sayed, M. A. (2018). Gold Nanorod Photothermal Therapy Alters Cell Junctions and Actin Network in Inhibiting Cancer Cell Collective Migration.
ACS nano,
12(9), 9279–9290.
https://doi.org/10.1021/acsnano.8b04128
-
Sunoqrot, S., , Al-Shalabi, E., , & Messersmith, P. B., (2018). Facile synthesis and surface modification of bioinspired nanoparticles from quercetin for drug delivery.
Biomaterials science,
6(10), 2656–2666.
https://doi.org/10.1039/c8bm00587g
-
Fuchigami, H., Manabe, S., Yasunaga, M., & Matsumura, Y. (2018). Chemotherapy payload of anti-insoluble fibrin antibody-drug conjugate is released specifically upon binding to fibrin.
Scientific reports,
8(1), 14211.
https://doi.org/10.1038/s41598-018-32601-0
-
Zhang, M., Zhu, J., Zheng, Y., Guo, R., Wang, S., Mignani, S., Caminade, A. M., Majoral, J. P., & Shi, X. (2018). Doxorubicin-Conjugated PAMAM Dendrimers for pH-Responsive Drug Release and Folic Acid-Targeted Cancer Therapy.
Pharmaceutics,
10(3), 162.
https://doi.org/10.3390/pharmaceutics10030162
-
Shi, N. Q., Li, Y., Zhang, Y., Li, Z. Q., & Qi, X. R. (2018). Deepened cellular/subcellular interface penetration and enhanced antitumor efficacy of cyclic peptidic ligand-decorated accelerating active targeted nanomedicines.
International journal of nanomedicine,
13, 5537–5559.
https://doi.org/10.2147/IJN.S172556
-
Chen, H., Sha, H., Zhang, L., Qian, H., Chen, F., Ding, N., Ji, L., Zhu, A., Xu, Q., Meng, F., Yu, L., Zhou, Y., & Liu, B. (2018). Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein.
International journal of nanomedicine,
13, 5347–5359.
https://doi.org/10.2147/IJN.S165109
-
Shankar, G. M., Kirtane, A. R., Miller, J. J., Mazdiyasni, H., Rogner, J., Tai, T., Williams, E. A., Higuchi, F., Juratli, T. A., Tateishi, K., Koerner, M., Tummala, S. S., Fink, A. L., Penson, T., Schmidt, S. P., Wojtkiewicz, G. R., Baig, A., Francis, J. M., Rinne, M. L., Batten, J. M., … Cahill, D. P. (2018). Genotype-targeted local therapy of glioma.
Proceedings of the National Academy of Sciences of the United States of America,
115(36), E8388–E8394.
https://doi.org/10.1073/pnas.1805751115
-
Vijayan, V., Uthaman, S., & Park, I. K. (2018). Cell Membrane-Camouflaged Nanoparticles: A Promising Biomimetic Strategy for Cancer Theragnostics.
Polymers,
10(9), 983.
https://doi.org/10.3390/polym10090983
-
Deci, M. B., Liu, M., Dinh, Q. T., & Nguyen, J. (2018). Precision engineering of targeted nanocarriers.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology,
10(5), e1511.
https://doi.org/10.1002/wnan.1511
-
Markwalter, C. E., & Prud'homme, R. K. (2018). Design of a Small-Scale Multi-Inlet Vortex Mixer for Scalable Nanoparticle Production and Application to the Encapsulation of Biologics by Inverse Flash NanoPrecipitation.
Journal of pharmaceutical sciences,
107(9), 2465–2471.
https://doi.org/10.1016/j.xphs.2018.05.003
-
Deng, H., Dutta, P., & Liu, J. (2018). Stochastic simulations of nanoparticle internalization through transferrin receptor dependent clathrin-mediated endocytosis.
Biochimica et biophysica acta. General subjects,
1862(9), 2104–2111.
https://doi.org/10.1016/j.bbagen.2018.06.018
-
Wang, S., Yu, G., Wang, Z., Jacobson, O., Tian, R., Lin, L. S., Zhang, F., Wang, J., & Chen, X. (2018). Hierarchical Tumor Microenvironment-Responsive Nanomedicine for Programmed Delivery of Chemotherapeutics.
Advanced materials (Deerfield Beach, Fla.), e1803926. Advance online publication.
https://doi.org/10.1002/adma.201803926
-
Zhao, J., Wan, Z., Zhou, C., Yang, Q., Dong, J., Song, X., & Gong, T. (2018). Hyaluronic Acid Layer-By-Layer (LbL) Nanoparticles for Synergistic Chemo-Phototherapy.
Pharmaceutical research,
35(10), 196.
https://doi.org/10.1007/s11095-018-2480-8
-
Stewart, M. P., Langer, R., & Jensen, K. F. (2018). Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts.
Chemical reviews,
118(16), 7409–7531.
https://doi.org/10.1021/acs.chemrev.7b00678
-
Evangelopoulos, M., Parodi, A., Martinez, J. O., & Tasciotti, E. (2018). Trends towards Biomimicry in Theranostics.
Nanomaterials (Basel, Switzerland),
8(9), 637.
https://doi.org/10.3390/nano8090637
-
Surapaneni, S. K., Bashir, S., & Tikoo, K. (2018). Gold nanoparticles-induced cytotoxicity in triple negative breast cancer involves different epigenetic alterations depending upon the surface charge.
Scientific reports,
8(1), 12295.
https://doi.org/10.1038/s41598-018-30541-3
-
Dragulska, S. A., Chen, Y., Wlodarczyk, M. T., Poursharifi, M., Dottino, P., Ulijn, R. V., Martignetti, J. A., & Mieszawska, A. J. (2018). Tripeptide-Stabilized Oil-in-Water Nanoemulsion of an Oleic Acids-Platinum(II) Conjugate as an Anticancer Nanomedicine.
Bioconjugate chemistry,
29(8), 2514–2519.
https://doi.org/10.1021/acs.bioconjchem.8b00409
-
Ghoreishi, S. M., Khalaj, A., Sabzevari, O., Badrzadeh, L., Mohammadzadeh, P., Mousavi Motlagh, S. S., Bitarafan-Rajabi, A., & Shafiee Ardestani, M. (2018). Technetium-99m chelator-free radiolabeling of specific glutamine tumor imaging nanoprobe: in vitro and in vivo evaluations.
International journal of nanomedicine,
13, 4671–4683.
https://doi.org/10.2147/IJN.S157426
-
Hsu, H. J., Han, Y., Cheong, M., Král, P., & Hong, S. (2018). Dendritic PEG outer shells enhance serum stability of polymeric micelles.
Nanomedicine : nanotechnology, biology, and medicine,
14(6), 1879–1889.
https://doi.org/10.1016/j.nano.2018.05.010
-
Heggannavar, G. B., Hiremath, C. G., Achari, D. D., Pangarkar, V. G., & Kariduraganavar, M. Y. (2018). Development of Doxorubicin-Loaded Magnetic Silica-Pluronic F-127 Nanocarriers Conjugated with Transferrin for Treating Glioblastoma across the Blood-Brain Barrier Using an in Vitro Model.
ACS omega,
3(7), 8017–8026.
https://doi.org/10.1021/acsomega.8b00152
-
Guan, J., Shen, Q., Zhang, Z., Jiang, Z., Yang, Y., Lou, M., Qian, J., Lu, W., & Zhan, C. (2018). Enhanced immunocompatibility of ligand-targeted liposomes by attenuating natural IgM absorption.
Nature communications,
9(1), 2982.
https://doi.org/10.1038/s41467-018-05384-1
-
Theek, B., Baues, M., Gremse, F., Pola, R., Pechar, M., Negwer, I., Koynov, K., Weber, B., Barz, M., Jahnen-Dechent, W., Storm, G., Kiessling, F., & Lammers, T. (2018). Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors.
Journal of controlled release : official journal of the Controlled Release Society,
282, 25–34.
https://doi.org/10.1016/j.jconrel.2018.05.002
-
Efremova, M. V., Naumenko, V. A., Spasova, M., Garanina, A. S., Abakumov, M. A., Blokhina, A. D., Melnikov, P. A., Prelovskaya, A. O., Heidelmann, M., Li, Z. A., Ma, Z., Shchetinin, I. V., Golovin, Y. I., Kireev, I. I., Savchenko, A. G., Chekhonin, V. P., Klyachko, N. L., Farle, M., Majouga, A. G., & Wiedwald, U. (2018). Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics.
Scientific reports,
8(1), 11295.
https://doi.org/10.1038/s41598-018-29618-w
-
Wang, P., Fan, Y., Lu, L., Liu, L., Fan, L., Zhao, M., Xie, Y., Xu, C., & Zhang, F. (2018). NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer.
Nature communications,
9(1), 2898.
https://doi.org/10.1038/s41467-018-05113-8
-
-
Guo, F., Wu, J., Wu, W., Huang, D., Yan, Q., Yang, Q., Gao, Y., & Yang, G. (2018). PEGylated self-assembled enzyme-responsive nanoparticles for effective targeted therapy against lung tumors.
Journal of nanobiotechnology,
16(1), 57.
https://doi.org/10.1186/s12951-018-0384-8
-
Ponzoni, M., Pastorino, F., Di Paolo, D., Perri, P., & Brignole, C. (2018). Targeting Macrophages as a Potential Therapeutic Intervention: Impact on Inflammatory Diseases and Cancer.
International journal of molecular sciences,
19(7), 1953.
https://doi.org/10.3390/ijms19071953
-
Zhang, T. T., Xu, C. H., Zhao, W., Gu, Y., Li, X. L., Xu, J. J., & Chen, H. Y. (2018). A redox-activated theranostic nanoagent: toward multi-mode imaging guided chemo-photothermal therapy.
Chemical science,
9(33), 6749–6757.
https://doi.org/10.1039/c8sc02446d
-
Li, F., Wang, Y., Li, D., Chen, Y., Qiao, X., Fardous, R., Lewandowski, A., Liu, J., Chan, T. H., & Dou, Q. P. (2018). Perspectives on the recent developments with green tea polyphenols in drug discovery.
Expert opinion on drug discovery,
13(7), 643–660.
https://doi.org/10.1080/17460441.2018.1465923
-
-
Nierenberg, D., Khaled, A. R., & Flores, O. (2018). Formation of a protein corona influences the biological identity of nanomaterials.
Reports of practical oncology and radiotherapy : journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology,
23(4), 300–308.
https://doi.org/10.1016/j.rpor.2018.05.005
-
Bolu, B. S., Sanyal, R., & Sanyal, A. (2018). Drug Delivery Systems from Self-Assembly of Dendron-Polymer Conjugates †.
Molecules (Basel, Switzerland),
23(7), 1570.
https://doi.org/10.3390/molecules23071570
-
-
Wu, X., Zhu, Y., Huang, W., Li, J., Zhang, B., Li, Z., & Yang, X. (2018). Hyperbaric Oxygen Potentiates Doxil Antitumor Efficacy by Promoting Tumor Penetration and Sensitizing Cancer Cells.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
5(8), 1700859.
https://doi.org/10.1002/advs.201700859
-
Hossen, S., Hossain, M. K., Basher, M. K., Mia, M., Rahman, M. T., & Uddin, M. J. (2018). Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.
Journal of advanced research,
15, 1–18.
https://doi.org/10.1016/j.jare.2018.06.005
-
Wagner, A. M., Spencer, D. S., & Peppas, N. A. (2018). Advanced architectures in the design of responsive polymers for cancer nanomedicine.
Journal of applied polymer science,
135(24), 46154.
https://doi.org/10.1002/app.46154
-
Clement, S., Chen, W., Deng, W., & Goldys, E. M. (2018). X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs.
International journal of nanomedicine,
13, 3553–3570.
https://doi.org/10.2147/IJN.S164967
-
Lo Presti, E., Pizzolato, G., Corsale, A. M., Caccamo, N., Sireci, G., Dieli, F., & Meraviglia, S. (2018). γδ T Cells and Tumor Microenvironment: From Immunosurveillance to Tumor Evasion.
Frontiers in immunology,
9, 1395.
https://doi.org/10.3389/fimmu.2018.01395
-
-
Pellino, G., Gallo, G., Pallante, P., Capasso, R., De Stefano, A., Maretto, I., Malapelle, U., Qiu, S., Nikolaou, S., Barina, A., Clerico, G., Reginelli, A., Giuliani, A., Sciaudone, G., Kontovounisios, C., Brunese, L., Trompetto, M., & Selvaggi, F. (2018). Noninvasive Biomarkers of Colorectal Cancer: Role in Diagnosis and Personalised Treatment Perspectives.
Gastroenterology research and practice,
2018, 2397863.
https://doi.org/10.1155/2018/2397863
-
Lu, H. D., Ristroph, K. D., Dobrijevic, E., Feng, J., McManus, S. A., Zhang, Y., Mulhearn, W. D., Ramachandruni, H., Patel, A., & Prud'homme, R. K. (2018). Encapsulation of OZ439 into Nanoparticles for Supersaturated Drug Release in Oral Malaria Therapy.
ACS infectious diseases,
4(6), 970–979.
https://doi.org/10.1021/acsinfecdis.7b00278
-
Zhang, M., & Merlin, D. (2018). Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis.
Inflammatory bowel diseases,
24(7), 1401–1415.
https://doi.org/10.1093/ibd/izy123
-
Zhu, X., Li, J., Qiu, X., Liu, Y., Feng, W., & Li, F. (2018). Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature.
Nature communications,
9(1), 2176.
https://doi.org/10.1038/s41467-018-04571-4
-
Wonder, E., Simón-Gracia, L., Scodeller, P., Majzoub, R. N., Kotamraju, V. R., Ewert, K. K., Teesalu, T., & Safinya, C. R. (2018). Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo.
Biomaterials,
166, 52–63.
https://doi.org/10.1016/j.biomaterials.2018.02.052
-
Zhong, J. X., Clegg, J. R., Ander, E. W., & Peppas, N. A. (2018). Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization.
Journal of biomedical materials research. Part A,
106(6), 1677–1686.
https://doi.org/10.1002/jbm.a.36371
-
Pereira, R. L., Nascimento, I. C., Santos, A. P., Ogusuku, I., Lameu, C., Mayer, G., & Ulrich, H. (2018). Aptamers: novelty tools for cancer biology.
Oncotarget,
9(42), 26934–26953.
https://doi.org/10.18632/oncotarget.25260
-
AbouAitah, K., Swiderska-Sroda, A., Farghali, A. A., Wojnarowicz, J., Stefanek, A., Gierlotka, S., Opalinska, A., Allayeh, A. K., Ciach, T., & Lojkowski, W. (2018). Folic acid-conjugated mesoporous silica particles as nanocarriers of natural prodrugs for cancer targeting and antioxidant action.
Oncotarget,
9(41), 26466–26490.
https://doi.org/10.18632/oncotarget.25470
-
Kim, H., Kim, D., Jeong, J., Jeon, H., & Lee, J. B. (2018). Size-Controllable Enzymatic Synthesis of Short Hairpin RNA Nanoparticles by Controlling the Rate of RNA Polymerization.
Polymers,
10(6), 589.
https://doi.org/10.3390/polym10060589
-
Wang, H., Agarwal, P., Zhao, G., Ji, G., Jewell, C. M., Fisher, J. P., Lu, X., & He, X. (2018). Overcoming Ovarian Cancer Drug Resistance with a Cold Responsive Nanomaterial.
ACS central science,
4(5), 567–581.
https://doi.org/10.1021/acscentsci.8b00050
-
Li, E., Yang, Y., Hao, G., Yi, X., Zhang, S., Pan, Y., Xing, B., & Gao, M. (2018). Multifunctional Magnetic Mesoporous Silica Nanoagents for
in vivo Enzyme-Responsive Drug Delivery and MR Imaging.
Nanotheranostics,
2(3), 233–242.
https://doi.org/10.7150/ntno.25565
-
Lai, Y. H., Chiang, C. S., Kao, T. H., & Chen, S. Y. (2018). Dual-drug nanomedicine with hydrophilic F127-modified magnetic nanocarriers assembled in amphiphilic gelatin for enhanced penetration and drug delivery in deep tumor tissue.
International journal of nanomedicine,
13, 3011–3026.
https://doi.org/10.2147/IJN.S161314
-
Zhou, Q., Zhang, L., Yang, T., & Wu, H. (2018). Stimuli-responsive polymeric micelles for drug delivery and cancer therapy.
International journal of nanomedicine,
13, 2921–2942.
https://doi.org/10.2147/IJN.S158696
-
Chen, J., Li, X., Zhao, X., Wu, Q., Zhu, H., Mao, Z., & Gao, C. (2018). Doxorubicin-conjugated pH-responsive gold nanorods for combined photothermal therapy and chemotherapy of cancer.
Bioactive materials,
3(3), 347–354.
https://doi.org/10.1016/j.bioactmat.2018.05.003
-
Merzel, R. L., Orr, B. G., & Banaszak Holl, M. M. (2018). Distributions: The Importance of the Chemist's Molecular View for Biological Materials.
Biomacromolecules,
19(5), 1469–1484.
https://doi.org/10.1021/acs.biomac.8b00375
-
Li, M., Sun, X., Zhang, N., Wang, W., Yang, Y., Jia, H., & Liu, W. (2018). NIR-Activated Polydopamine-Coated Carrier-Free "Nanobomb" for In Situ On-Demand Drug Release.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
5(7), 1800155.
https://doi.org/10.1002/advs.201800155
-
Kimura, N., Maeki, M., Sato, Y., Note, Y., Ishida, A., Tani, H., Harashima, H., & Tokeshi, M. (2018). Development of the iLiNP Device: Fine Tuning the Lipid Nanoparticle Size within 10 nm for Drug Delivery.
ACS omega,
3(5), 5044–5051.
https://doi.org/10.1021/acsomega.8b00341
-
Fenton, O. S., Olafson, K. N., Pillai, P. S., Mitchell, M. J., & Langer, R. (2018). Advances in Biomaterials for Drug Delivery.
Advanced materials (Deerfield Beach, Fla.), e1705328. Advance online publication.
https://doi.org/10.1002/adma.201705328
-
Krinsky, N., Kaduri, M., Zinger, A., Shainsky-Roitman, J., Goldfeder, M., Benhar, I., Hershkovitz, D., & Schroeder, A. (2018). Synthetic Cells Synthesize Therapeutic Proteins inside Tumors.
Advanced healthcare materials,
7(9), e1701163.
https://doi.org/10.1002/adhm.201701163
-
Jin, Y., Jia, J., Li, C., Xue, J., Sun, J., Wang, K., Gan, Y., Xu, J., Shi, Y., & Liang, X. (2018). LAL test and RPT for endotoxin detection of CPT-11/DSPE-mPEG2000 nanoformulation: What if traditional methods are not applicable?.
Asian journal of pharmaceutical sciences,
13(3), 289–296.
https://doi.org/10.1016/j.ajps.2017.11.003
-
Jin, R., Liu, Z., Bai, Y., Zhou, Y., & Chen, X. (2018). Multiple-Responsive Mesoporous Silica Nanoparticles for Highly Accurate Drugs Delivery to Tumor Cells.
ACS omega,
3(4), 4306–4315.
https://doi.org/10.1021/acsomega.8b00427
-
Gou, Y., Miao, D., Zhou, M., Wang, L., Zhou, H., & Su, G. (2018). Bio-Inspired Protein-Based Nanoformulations for Cancer Theranostics.
Frontiers in pharmacology,
9, 421.
https://doi.org/10.3389/fphar.2018.00421
-
McKenzie, M., Ha, S. M., Rammohan, A., Radhakrishnan, R., & Ramakrishnan, N. (2018). Multivalent Binding of a Ligand-Coated Particle: Role of Shape, Size, and Ligand Heterogeneity.
Biophysical journal,
114(8), 1830–1846.
https://doi.org/10.1016/j.bpj.2018.03.007
-
Jin, M., Jin, G., Kang, L., Chen, L., Gao, Z., & Huang, W. (2018). Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes.
International journal of nanomedicine,
13, 2405–2426.
https://doi.org/10.2147/IJN.S161426
-
Hameed, S., Bhattarai, P., & Dai, Z. (2018). Cerasomes and Bicelles: Hybrid Bilayered Nanostructures With Silica-Like Surface in Cancer Theranostics.
Frontiers in chemistry,
6, 127.
https://doi.org/10.3389/fchem.2018.00127
-
Yang, H., Guo, J., Tong, R., Yang, C., & Chen, J. K. (2018). pH-Sensitive Micelles Based on Star Copolymer Ad-(PCL-b-PDEAEMA-b-PPEGMA)₄ for Controlled Drug Delivery.
Polymers,
10(4), 443.
https://doi.org/10.3390/polym10040443
-
Rosenblum, D., Joshi, N., Tao, W., Karp, J. M., & Peer, D. (2018). Progress and challenges towards targeted delivery of cancer therapeutics.
Nature communications,
9(1), 1410.
https://doi.org/10.1038/s41467-018-03705-y
-
Dan, N., Setua, S., Kashyap, V. K., Khan, S., Jaggi, M., Yallapu, M. M., & Chauhan, S. C. (2018). Antibody-Drug Conjugates for Cancer Therapy: Chemistry to Clinical Implications.
Pharmaceuticals (Basel, Switzerland),
11(2), 32.
https://doi.org/10.3390/ph11020032
-
Kang, E. S., Kim, D. S., Suhito, I. R., Lee, W., Song, I., & Kim, T. H. (2018). Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation.
Biomaterials research,
22, 10.
https://doi.org/10.1186/s40824-018-0120-3
-
Baudrimont, M., Andrei, J., Mornet, S., Gonzalez, P., Mesmer-Dudons, N., Gourves, P. Y., Jaffal, A., Dedourge-Geffard, O., Geffard, A., Geffard, O., Garric, J., & Feurtet-Mazel, A. (2018). Trophic transfer and effects of gold nanoparticles (AuNPs) in Gammarus fossarum from contaminated periphytic biofilm.
Environmental science and pollution research international,
25(12), 11181–11191.
https://doi.org/10.1007/s11356-017-8400-3
-
Saratale, R. G., Shin, H. S., Kumar, G., Benelli, G., Ghodake, G. S., Jiang, Y. Y., Kim, D. S., & Saratale, G. D. (2018). Exploiting fruit byproducts for eco-friendly nanosynthesis: Citrus × clementina peel extract mediated fabrication of silver nanoparticles with high efficacy against microbial pathogens and rat glial tumor C6 cells.
Environmental science and pollution research international,
25(11), 10250–10263.
https://doi.org/10.1007/s11356-017-8724-z
-
Saratale, R. G., Benelli, G., Kumar, G., Kim, D. S., & Saratale, G. D. (2018). Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens.
Environmental science and pollution research international,
25(11), 10392–10406.
https://doi.org/10.1007/s11356-017-9581-5
-
Shamay, Y., Shah, J., Işık, M., Mizrachi, A., Leibold, J., Tschaharganeh, D. F., Roxbury, D., Budhathoki-Uprety, J., Nawaly, K., Sugarman, J. L., Baut, E., Neiman, M. R., Dacek, M., Ganesh, K. S., Johnson, D. C., Sridharan, R., Chu, K. L., Rajasekhar, V. K., Lowe, S. W., Chodera, J. D., … Heller, D. A. (2018). Quantitative self-assembly prediction yields targeted nanomedicines.
Nature materials,
17(4), 361–368.
https://doi.org/10.1038/s41563-017-0007-z
-
Xue, X., Huang, Y., Wang, X., Wang, Z., Carney, R. P., Li, X., Yuan, Y., He, Y., Lin, T. Y., & Li, Y. (2018). Self-indicating, fully active pharmaceutical ingredients nanoparticles (FAPIN) for multimodal imaging guided trimodality cancer therapy.
Biomaterials,
161, 203–215.
https://doi.org/10.1016/j.biomaterials.2018.01.044
-
Nedungadi, P., Iyer, A., Gutjahr, G., Bhaskar, J., & Pillai, A. B. (2018). Data-Driven Methods for Advancing Precision Oncology.
Current pharmacology reports,
4(2), 145–156.
https://doi.org/10.1007/s40495-018-0127-4
-
Tatiparti, K., Sau, S., Gawde, K. A., & Iyer, A. K. (2018). Copper-Free 'Click' Chemistry-Based Synthesis and Characterization of Carbonic Anhydrase-IX Anchored Albumin-Paclitaxel Nanoparticles for Targeting Tumor Hypoxia.
International journal of molecular sciences,
19(3), 838.
https://doi.org/10.3390/ijms19030838
-
Ribeiro, C., Borges, J., Costa, A., Gaspar, V. M., Bermudez, V. Z., & Mano, J. F. (2018). Preparation of Well-Dispersed Chitosan/Alginate Hollow Multilayered Microcapsules for Enhanced Cellular Internalization.
Molecules (Basel, Switzerland),
23(3), 625.
https://doi.org/10.3390/molecules23030625
-
Xie, J., Fan, Z., Li, Y., Zhang, Y., Yu, F., Su, G., Xie, L., & Hou, Z. (2018). Design of pH-sensitive methotrexate prodrug-targeted curcumin nanoparticles for efficient dual-drug delivery and combination cancer therapy.
International journal of nanomedicine,
13, 1381–1398.
https://doi.org/10.2147/IJN.S152312
-
Gholizadeh, S., Dolman, E. M., Wieriks, R., Sparidans, R. W., Hennink, W. E., & Kok, R. J. (2018). Anti-GD2 Immunoliposomes for Targeted Delivery of the Survivin Inhibitor Sepantronium Bromide (YM155) to Neuroblastoma Tumor Cells.
Pharmaceutical research,
35(4), 85.
https://doi.org/10.1007/s11095-018-2373-x
-
Bai, F., Yin, Y., Chen, T., Chen, J., Ge, M., Lu, Y., Xie, F., Zhang, J., Wu, K., & Liu, Y. (2018). Development of liposomal pemetrexed for enhanced therapy against multidrug resistance mediated by ABCC5 in breast cancer.
International journal of nanomedicine,
13, 1327–1339.
https://doi.org/10.2147/IJN.S150237
-
Ye, Y., Yu, J., Wen, D., Kahkoska, A. R., & Gu, Z. (2018). Polymeric microneedles for transdermal protein delivery.
Advanced drug delivery reviews,
127, 106–118.
https://doi.org/10.1016/j.addr.2018.01.015
-
Bayrac, A. T., Akca, O. E., Eyidogan, F. I., & Oktem, H. A. (2018). Target-specific delivery of doxorubicin to human glioblastoma cell line via ssDNA aptamer. Journal of biosciences, 43(1), 97–104.
-
Sarangthem, V., Cho, E. A., Yi, A., Kim, S. K., Lee, B. H., & Park, R. W. (2018). Application of Bld-1-Embedded Elastin-Like Polypeptides in Tumor Targeting.
Scientific reports,
8(1), 3892.
https://doi.org/10.1038/s41598-018-21910-z
-
Ye, H., Shen, Z., Yu, L., Wei, M., & Li, Y. (2018). Manipulating nanoparticle transport within blood flow through external forces: an exemplar of mechanics in nanomedicine.
Proceedings. Mathematical, physical, and engineering sciences,
474(2211), 20170845.
https://doi.org/10.1098/rspa.2017.0845
-
Zinger, A., Adir, O., Alper, M., Simon, A., Poley, M., Tzror, C., Yaari, Z., Krayem, M., Kasten, S., Nawy, G., Herman, A., Nir, Y., Akrish, S., Klein, T., Shainsky-Roitman, J., Hershkovitz, D., & Schroeder, A. (2018). Proteolytic Nanoparticles Replace a Surgical Blade by Controllably Remodeling the Oral Connective Tissue.
ACS nano,
12(2), 1482–1490.
https://doi.org/10.1021/acsnano.7b07983
-
Guimarães, P., Gaglione, S., Sewastianik, T., Carrasco, R. D., Langer, R., & Mitchell, M. J. (2018). Nanoparticles for Immune Cytokine TRAIL-Based Cancer Therapy.
ACS nano,
12(2), 912–931.
https://doi.org/10.1021/acsnano.7b05876
-
Bachu, R. D., Chowdhury, P., Al-Saedi, Z., Karla, P. K., & Boddu, S. (2018). Ocular Drug Delivery Barriers-Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases.
Pharmaceutics,
10(1), 28.
https://doi.org/10.3390/pharmaceutics10010028
-
Pan, C., Liu, Y., Zhou, M., Wang, W., Shi, M., Xing, M., & Liao, W. (2018). Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment.
International journal of nanomedicine,
13, 1119–1137.
https://doi.org/10.2147/IJN.S147464
-
Łukasiewicz, K., & Fol, M. (2018). Microorganisms in the Treatment of Cancer: Advantages and Limitations.
Journal of immunology research,
2018, 2397808.
https://doi.org/10.1155/2018/2397808
-
Yu, G., Yang, Z., Fu, X., Yung, B. C., Yang, J., Mao, Z., Shao, L., Hua, B., Liu, Y., Zhang, F., Fan, Q., Wang, S., Jacobson, O., Jin, A., Gao, C., Tang, X., Huang, F., & Chen, X. (2018). Polyrotaxane-based supramolecular theranostics.
Nature communications,
9(1), 766.
https://doi.org/10.1038/s41467-018-03119-w
-
Wang, P., Rahman, M. A., Zhao, Z., Weiss, K., Zhang, C., Chen, Z., Hurwitz, S. J., Chen, Z. G., Shin, D. M., & Ke, Y. (2018). Visualization of the Cellular Uptake and Trafficking of DNA Origami Nanostructures in Cancer Cells.
Journal of the American Chemical Society,
140(7), 2478–2484.
https://doi.org/10.1021/jacs.7b09024
-
Tsai, H. I., Jiang, L., Zeng, X., Chen, H., Li, Z., Cheng, W., Zhang, J., Pan, J., Wan, D., Gao, L., Xie, Z., Huang, L., Mei, L., & Liu, G. (2018). DACHPt-Loaded Nanoparticles Self-assembled from Biodegradable Dendritic Copolymer Polyglutamic Acid-
b-D-α-Tocopheryl Polyethylene Glycol 1000 Succinate for Multidrug Resistant Lung Cancer Therapy.
Frontiers in pharmacology,
9, 119.
https://doi.org/10.3389/fphar.2018.00119
-
Yang, J., Su, H., Sun, W., Cai, J., Liu, S., Chai, Y., & Zhang, C. (2018). Dual Chemodrug-Loaded Single-Walled Carbon Nanohorns for Multimodal Imaging-Guided Chemo-Photothermal Therapy of Tumors and Lung Metastases.
Theranostics,
8(7), 1966–1984.
https://doi.org/10.7150/thno.23848
-
Zhang, J., Fang, X., Li, Z., Chan, H. F., Lin, Z., Wang, Y., & Chen, M. (2018). Redox-sensitive micelles composed of disulfide-linked Pluronic-linoleic acid for enhanced anticancer efficiency of brusatol.
International journal of nanomedicine,
13, 939–956.
https://doi.org/10.2147/IJN.S130696
-
Prusty, D. K., Adam, V., Zadegan, R. M., Irsen, S., & Famulok, M. (2018). Supramolecular aptamer nano-constructs for receptor-mediated targeting and light-triggered release of chemotherapeutics into cancer cells.
Nature communications,
9(1), 535.
https://doi.org/10.1038/s41467-018-02929-2
-
Wang, H., Li, X., Tse, B. W., Yang, H., Thorling, C. A., Liu, Y., Touraud, M., Chouane, J. B., Liu, X., Roberts, M. S., & Liang, X. (2018). Indocyanine green-incorporating nanoparticles for cancer theranostics.
Theranostics,
8(5), 1227–1242.
https://doi.org/10.7150/thno.22872
-
Beck, S., Schultze, J., Räder, H. J., Holm, R., Schinnerer, M., Barz, M., Koynov, K., & Zentel, R. (2018). Site-Specific DBCO Modification of DEC205 Antibody for Polymer Conjugation.
Polymers,
10(2), 141.
https://doi.org/10.3390/polym10020141
-
Myung, J. H., Park, S. J., Wang, A. Z., & Hong, S. (2018). Integration of biomimicry and nanotechnology for significantly improved detection of circulating tumor cells (CTCs).
Advanced drug delivery reviews,
125, 36–47.
https://doi.org/10.1016/j.addr.2017.12.005
-
Kuhn, P., Eyer, K., & Dittrich, P. S. (2018). A microfluidic device for the delivery of enzymes into cells by liposome fusion.
Engineering in life sciences,
18(2), 149–156.
https://doi.org/10.1002/elsc.201600150
-
Feng, S., Zhang, H., Zhi, C., Gao, X. D., & Nakanishi, H. (2018). pH-responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery.
International journal of nanomedicine,
13, 641–652.
https://doi.org/10.2147/IJN.S153476
-
Gad, S. F., Park, J., Park, J. E., Fetih, G. N., Tous, S. S., Lee, W., & Yeo, Y. (2018). Enhancing Docetaxel Delivery to Multidrug-Resistant Cancer Cells with Albumin-Coated Nanocrystals.
Molecular pharmaceutics, 10.1021/acs.molpharmaceut.7b00783. Advance online publication.
https://doi.org/10.1021/acs.molpharmaceut.7b00783
-
Hartshorn, C. M., Bradbury, M. S., Lanza, G. M., Nel, A. E., Rao, J., Wang, A. Z., Wiesner, U. B., Yang, L., & Grodzinski, P. (2018). Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care.
ACS nano,
12(1), 24–43.
https://doi.org/10.1021/acsnano.7b05108
-
Mastria, E. M., Cai, L. Y., Kan, M. J., Li, X., Schaal, J. L., Fiering, S., Gunn, M. D., Dewhirst, M. W., Nair, S. K., & Chilkoti, A. (2018). Nanoparticle formulation improves doxorubicin efficacy by enhancing host antitumor immunity.
Journal of controlled release : official journal of the Controlled Release Society,
269, 364–373.
https://doi.org/10.1016/j.jconrel.2017.11.021
-
Nabar, G. M., Mahajan, K. D., Calhoun, M. A., Duong, A. D., Souva, M. S., Xu, J., Czeisler, C., Puduvalli, V. K., Otero, J. J., Wyslouzil, B. E., & Winter, J. O. (2018). Micelle-templated, poly(lactic-
co-glycolic acid) nanoparticles for hydrophobic drug delivery.
International journal of nanomedicine,
13, 351–366.
https://doi.org/10.2147/IJN.S142079
-
Gadok, A. K., Zhao, C., Meriwether, A. I., Ferrati, S., Rowley, T. G., Zoldan, J., Smyth, H., & Stachowiak, J. C. (2018). The Display of Single-Domain Antibodies on the Surfaces of Connectosomes Enables Gap Junction-Mediated Drug Delivery to Specific Cell Populations.
Biochemistry,
57(1), 81–90.
https://doi.org/10.1021/acs.biochem.7b00688
-
Jang, S. C., Kang, S. M., Lee, J. Y., Oh, S. Y., Vilian, A. E., Lee, I., Han, Y. K., Park, J. H., Cho, W. S., Roh, C., & Huh, Y. S. (2018). Nano-graphene oxide composite for in vivo imaging.
International journal of nanomedicine,
13, 221–234.
https://doi.org/10.2147/IJN.S148211
-
Yan, G. H., Wang, K., Shao, Z., Luo, L., Song, Z. M., Chen, J., Jin, R., Deng, X., Wang, H., Cao, Z., Liu, Y., & Cao, A. (2018). Artificial antibody created by conformational reconstruction of the complementary-determining region on gold nanoparticles.
Proceedings of the National Academy of Sciences of the United States of America,
115(1), E34–E43.
https://doi.org/10.1073/pnas.1713526115
-
Molinaro, R., Corbo, C., Livingston, M., Evangelopoulos, M., Parodi, A., Boada, C., Agostini, M., & Tasciotti, E. (2018). Inflammation and Cancer: In Medio Stat Nano.
Current medicinal chemistry,
25(34), 4208–4223.
https://doi.org/10.2174/0929867324666170920160030
-
Lin, J., Hu, W., Gao, F., Qin, J., Peng, C., & Lu, X. (2018). Folic acid-modified diatrizoic acid-linked dendrimer-entrapped gold nanoparticles enable targeted CT imaging of human cervical cancer.
Journal of Cancer,
9(3), 564–577.
https://doi.org/10.7150/jca.19786
-
Li, R., He, Y., Zhang, S., Qin, J., & Wang, J. (2018). Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment.
Acta pharmaceutica Sinica. B,
8(1), 14–22.
https://doi.org/10.1016/j.apsb.2017.11.009
-
Palvai, S., Anandi, L., Sarkar, S., Augustus, M., Roy, S., Lahiri, M., & Basu, S. (2017). Drug-Triggered Self-Assembly of Linear Polymer into Nanoparticles for Simultaneous Delivery of Hydrophobic and Hydrophilic Drugs in Breast Cancer Cells.
ACS omega,
2(12), 8730–8740.
https://doi.org/10.1021/acsomega.7b01400
-
-
Park, W., Cho, S., Han, J., Shin, H., Na, K., Lee, B., & Kim, D. H. (2017). Advanced smart-photosensitizers for more effective cancer treatment.
Biomaterials science,
6(1), 79–90.
https://doi.org/10.1039/c7bm00872d
-
Niu, W., Teng, I. T., Chen, X., Tan, W., & Veige, A. S. (2017). Aptamer-mediated selective delivery of a cytotoxic cationic NHC-Au(i) complex to cancer cells.
Dalton transactions (Cambridge, England : 2003),
47(1), 120–126.
https://doi.org/10.1039/c7dt02616a
-
Marofi, F., Vahedi, G., Biglari, A., Esmaeilzadeh, A., & Athari, S. S. (2017). Mesenchymal Stromal/Stem Cells: A New Era in the Cell-Based Targeted Gene Therapy of Cancer.
Frontiers in immunology,
8, 1770.
https://doi.org/10.3389/fimmu.2017.01770
-
Singh A. K. (2017). Comparative Therapeutic Effects of Plant-Extract Synthesized and Traditionally Synthesized Gold Nanoparticles on Alcohol-Induced Inflammatory Activity in SH-SY5Y Cells In Vitro.
Biomedicines,
5(4), 70.
https://doi.org/10.3390/biomedicines5040070
-
Guo, S., Li, H., Ma, M., Fu, J., Dong, Y., & Guo, P. (2017). Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles.
Molecular therapy. Nucleic acids,
9, 399–408.
https://doi.org/10.1016/j.omtn.2017.10.010
-
Lian, X., Erazo-Oliveras, A., Pellois, J. P., & Zhou, H. C. (2017). High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks.
Nature communications,
8(1), 2075.
https://doi.org/10.1038/s41467-017-02103-0
-
Rahman, M. A., Wang, P., Zhao, Z., Wang, D., Nannapaneni, S., Zhang, C., Chen, Z., Griffith, C. C., Hurwitz, S. J., Chen, Z. G., Ke, Y., & Shin, D. M. (2017). Systemic Delivery of Bc12-Targeting siRNA by DNA Nanoparticles Suppresses Cancer Cell Growth.
Angewandte Chemie (International ed. in English),
56(50), 16023–16027.
https://doi.org/10.1002/anie.201709485
-
Jang H. S. (2017). The Diverse Range of Possible Cell Membrane Interactions with Substrates: Drug Delivery, Interfaces and Mobility.
Molecules (Basel, Switzerland),
22(12), 2197.
https://doi.org/10.3390/molecules22122197
-
Poon, C., Chowdhuri, S., Kuo, C. H., Fang, Y., Alenghat, F. J., Hyatt, D., Kani, K., Gross, M. E., & Chung, E. J. (2017). Protein Mimetic and Anticancer Properties of Monocyte-Targeting Peptide Amphiphile Micelles.
ACS biomaterials science & engineering,
3(12), 3273–3282.
https://doi.org/10.1021/acsbiomaterials.7b00600
-
Wu, S., Yang, X., Zou, M., Hou, Z., & Yan, J. (2017). A New Method Without Organic Solvent to Targeted Nanodrug for Enhanced Anticancer Efficacy.
Nanoscale research letters,
12(1), 416.
https://doi.org/10.1186/s11671-017-2174-x
-
-
Chesson, C. B., & Zloza, A. (2017). Nanoparticles: augmenting tumor antigen presentation for vaccine and immunotherapy treatments of cancer.
Nanomedicine (London, England),
12(23), 2693–2706.
https://doi.org/10.2217/nnm-2017-0254
-
Ekladious, I., Liu, R., Zhang, H., Foil, D. H., Todd, D. A., Graf, T. N., Padera, R. F., Oberlies, N. H., Colson, Y. L., & Grinstaff, M. W. (2017). Synthesis of poly(1,2-glycerol carbonate)-paclitaxel conjugates and their utility as a single high-dose replacement for multi-dose treatment regimens in peritoneal cancer.
Chemical science,
8(12), 8443–8450.
https://doi.org/10.1039/c7sc03501b
-
-
Palvai, S., Kuman, M. M., Sengupta, P., & Basu, S. (2017). Hyaluronic Acid Layered Chimeric Nanoparticles: Targeting MAPK-PI3K Signaling Hub in Colon Cancer Cells.
ACS omega,
2(11), 7868–7880.
https://doi.org/10.1021/acsomega.7b01315
-
Pérez-Medina, C., Hak, S., Reiner, T., Fayad, Z. A., Nahrendorf, M., & Mulder, W. (2017). Integrating nanomedicine and imaging.
Philosophical transactions. Series A, Mathematical, physical, and engineering sciences,
375(2107), 20170110.
https://doi.org/10.1098/rsta.2017.0110
-
Sun, J., Liu, Y., Ge, M., Zhou, G., Sun, W., Liu, D., Liang, X. J., & Zhang, J. (2017). A Distinct Endocytic Mechanism of Functionalized-Silica Nanoparticles in Breast Cancer Stem Cells.
Scientific reports,
7(1), 16236.
https://doi.org/10.1038/s41598-017-16591-z
-
Shi, J., Su, Y., Liu, W., Chang, J., & Zhang, Z. (2017). A nanoliposome-based photoactivable drug delivery system for enhanced cancer therapy and overcoming treatment resistance.
International journal of nanomedicine,
12, 8257–8275.
https://doi.org/10.2147/IJN.S143776
-
Yu, G., Zhang, M., Saha, M. L., Mao, Z., Chen, J., Yao, Y., Zhou, Z., Liu, Y., Gao, C., Huang, F., Chen, X., & Stang, P. J. (2017). Antitumor Activity of a Unique Polymer That Incorporates a Fluorescent Self-Assembled Metallacycle.
Journal of the American Chemical Society,
139(44), 15940–15949.
https://doi.org/10.1021/jacs.7b09224
-
Naqvi, S., Mohiyuddin, S., & Gopinath, P. (2017). Niclosamide loaded biodegradable chitosan nanocargoes: an
in vitro study for potential application in cancer therapy.
Royal Society open science,
4(11), 170611.
https://doi.org/10.1098/rsos.170611
-
Lee, D. K., Kee, T., Liang, Z., Hsiou, D., Miya, D., Wu, B., Osawa, E., Chow, E. K., Sung, E. C., Kang, M. K., & Ho, D. (2017). Clinical validation of a nanodiamond-embedded thermoplastic biomaterial.
Proceedings of the National Academy of Sciences of the United States of America,
114(45), E9445–E9454.
https://doi.org/10.1073/pnas.1711924114
-
Fernandes, R. S., de Aguiar Ferreira, C., Soares, D., Maffione, A. M., Townsend, D. M., Rubello, D., & de Barros, A. (2017). The role of radionuclide probes for monitoring anti-tumor drugs efficacy: A brief review.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
95, 469–476.
https://doi.org/10.1016/j.biopha.2017.08.079
-
Behzadi, S., Luther, G. A., Harris, M. B., Farokhzad, O. C., & Mahmoudi, M. (2017). Nanomedicine for safe healing of bone trauma: Opportunities and challenges.
Biomaterials,
146, 168–182.
https://doi.org/10.1016/j.biomaterials.2017.09.005
-
Liang, P., Tang, Q., Cai, Y., Liu, G., Si, W., Shao, J., Huang, W., Zhang, Q., & Dong, X. (2017). Self-quenched ferrocenyl diketopyrrolopyrrole organic nanoparticles with amplifying photothermal effect for cancer therapy.
Chemical science,
8(11), 7457–7463.
https://doi.org/10.1039/c7sc03351f
-
Xie, J., Li, Y., Song, L., Pan, Z., Ye, S., & Hou, Z. (2017). Design of a novel curcumin-soybean phosphatidylcholine complex-based targeted drug delivery systems.
Drug delivery,
24(1), 707–719.
https://doi.org/10.1080/10717544.2017.1303855
-
Qu, D., Guo, M., Qin, Y., Wang, L., Zong, B., Chen, Y., & Chen, Y. (2017). A multicomponent microemulsion using rational combination strategy improves lung cancer treatment through synergistic effects and deep tumor penetration.
Drug delivery,
24(1), 1179–1190.
https://doi.org/10.1080/10717544.2017.1365394
-
Jiang, X., Zhang, B., Zhou, Z., Meng, L., Sun, Z., Xu, Y., Xu, Q., Yuan, A., Yu, L., Qian, H., Wu, J., Hu, Y., & Liu, B. (2017). Enhancement of radiotherapy efficacy by pleiotropic liposomes encapsulated paclitaxel and perfluorotributylamine.
Drug delivery,
24(1), 1419–1428.
https://doi.org/10.1080/10717544.2017.1378939
-
Yang, X., Li, Z., Wu, Q., Chen, S., Yi, C., & Gong, C. (2017). TRAIL and curcumin codelivery nanoparticles enhance TRAIL-induced apoptosis through upregulation of death receptors.
Drug delivery,
24(1), 1526–1536.
https://doi.org/10.1080/10717544.2017.1384863
-
Ishak, R., Mostafa, N. M., & Kamel, A. O. (2017). Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery - comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution.
Drug delivery,
24(1), 1874–1890.
https://doi.org/10.1080/10717544.2017.1410263
-
-
Ameruoso, A., Palomba, R., Palange, A. L., Cervadoro, A., Lee, A., Di Mascolo, D., & Decuzzi, P. (2017). Ameliorating Amyloid-β Fibrils Triggered Inflammation
via Curcumin-Loaded Polymeric Nanoconstructs.
Frontiers in immunology,
8, 1411.
https://doi.org/10.3389/fimmu.2017.01411
-
Wu, X., Wang, L., Qiu, Y., Zhang, B., Hu, Z., & Jin, R. (2017). Cooperation of IRAK1/4 inhibitor and ABT-737 in nanoparticles for synergistic therapy of T cell acute lymphoblastic leukemia.
International journal of nanomedicine,
12, 8025–8034.
https://doi.org/10.2147/IJN.S146875
-
Li, Y., Liu, S., Zhao, X., Wang, Y., Liu, J., Wang, X., & Lu, L. (2017). CO2-based amphiphilic polycarbonate micelles enable a reliable and efficient platform for tumor imaging.
Theranostics,
7(19), 4689–4698.
https://doi.org/10.7150/thno.21672
-
Mady, F. M., & Shaker, M. A. (2017). Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles.
International journal of nanomedicine,
12, 7405–7417.
https://doi.org/10.2147/IJN.S147740
-
Yang, F., Fang, X., Jiang, W., & Chen, T. (2017). Bioresponsive cancer-targeted polysaccharide nanosystem to inhibit angiogenesis.
International journal of nanomedicine,
12, 7419–7431.
https://doi.org/10.2147/IJN.S139405
-
Kim, S. E., Kim, H. J., Rhee, J. K., & Park, K. (2017). Versatile Chemical Derivatizations to Design Glycol Chitosan-Based Drug Carriers.
Molecules (Basel, Switzerland),
22(10), 1662.
https://doi.org/10.3390/molecules22101662
-
da Silva, A. L., Cruz, F. F., Rocco, P., & Morales, M. M. (2017). New perspectives in nanotherapeutics for chronic respiratory diseases.
Biophysical reviews,
9(5), 793–803.
https://doi.org/10.1007/s12551-017-0319-x
-
Liu, X., Jiang, J., Ji, Y., Lu, J., Chan, R., & Meng, H. (2017). Targeted drug delivery using iRGD peptide for solid cancer treatment.
Molecular systems design & engineering,
2(4), 370–379.
https://doi.org/10.1039/C7ME00050B
-
Li, Y., Fu, Y., Ren, Z., Li, X., Mao, C., & Han, G. (2017). Enhanced cell uptake of fluorescent drug-loaded nanoparticles via an implantable photothermal fibrous patch for more effective cancer cell killing.
Journal of materials chemistry. B,
5(36), 7504–7511.
https://doi.org/10.1039/C7TB01142C
-
Schmidt, S., Tavernaro, I., Cavelius, C., Weber, E., Kümper, A., Schmitz, C., Fleddermann, J., & Kraegeloh, A. (2017). Silica Nanoparticles for Intracellular Protein Delivery: a Novel Synthesis Approach Using Green Fluorescent Protein.
Nanoscale research letters,
12(1), 545.
https://doi.org/10.1186/s11671-017-2280-9
-
Kim, O. Y., Park, H. T., Dinh, N., Choi, S. J., Lee, J., Kim, J. H., Lee, S. W., & Gho, Y. S. (2017). Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response.
Nature communications,
8(1), 626.
https://doi.org/10.1038/s41467-017-00729-8
-
Cao, Y., Liu, F., Chen, Y., Yu, T., Lou, D., Guo, Y., Li, P., Wang, Z., & Ran, H. (2017). Drug release from core-shell PVA/silk fibroin nanoparticles fabricated by one-step electrospraying.
Scientific reports,
7(1), 11913.
https://doi.org/10.1038/s41598-017-12351-1
-
Zhou, Z., Kennell, C., Jafari, M., Lee, J. Y., Ruiz-Torres, S. J., Waltz, S. E., & Lee, J. H. (2017). Sequential delivery of erlotinib and doxorubicin for enhanced triple negative Breast cancer treatment using polymeric nanoparticle.
International journal of pharmaceutics,
530(1-2), 300–307.
https://doi.org/10.1016/j.ijpharm.2017.07.085
-
Luong, D., Kesharwani, P., Alsaab, H. O., Sau, S., Padhye, S., Sarkar, F. H., & Iyer, A. K. (2017). Folic acid conjugated polymeric micelles loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers.
Colloids and surfaces. B, Biointerfaces,
157, 490–502.
https://doi.org/10.1016/j.colsurfb.2017.06.025
-
Eyvazzadeh, N., Shakeri-Zadeh, A., Fekrazad, R., Amini, E., Ghaznavi, H., & Kamran Kamrava, S. (2017). Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer.
Lasers in medical science,
32(7), 1469–1477.
https://doi.org/10.1007/s10103-017-2267-x
-
Guo, X., Guo, N., Zhao, J., & Cai, Y. (2017). Active targeting co-delivery system based on hollow mesoporous silica nanoparticles for antitumor therapy in ovarian cancer stem-like cells.
Oncology reports,
38(3), 1442–1450.
https://doi.org/10.3892/or.2017.5829
-
Bousmail, D., Amrein, L., Fakhoury, J. J., Fakih, H. H., Hsu, J., Panasci, L., & Sleiman, H. F. (2017). Precision spherical nucleic acids for delivery of anticancer drugs.
Chemical science,
8(9), 6218–6229.
https://doi.org/10.1039/c7sc01619k
-
Amin, D. R., Sugnaux, C., Lau, K., & Messersmith, P. B. (2017). Size Control and Fluorescence Labeling of Polydopamine Melanin-Mimetic Nanoparticles for Intracellular Imaging.
Biomimetics (Basel, Switzerland),
2(3), 17.
https://doi.org/10.3390/biomimetics2030017
-
Nowacki, M., Peterson, M., Kloskowski, T., McCabe, E., Guiral, D. C., Polom, K., Pietkun, K., Zegarska, B., Pokrywczynska, M., Drewa, T., Roviello, F., Medina, E. A., Habib, S. L., & Zegarski, W. (2017). Nanoparticle as a novel tool in hyperthermic intraperitoneal and pressurized intraperitoneal aerosol chemotheprapy to treat patients with peritoneal carcinomatosis.
Oncotarget,
8(44), 78208–78224.
https://doi.org/10.18632/oncotarget.20596
-
Kim, M. W., Jeong, H. Y., Kang, S. J., Choi, M. J., You, Y. M., Im, C. S., Lee, T. S., Song, I. H., Lee, C. G., Rhee, K. J., Lee, Y. K., & Park, Y. S. (2017). Cancer-targeted Nucleic Acid Delivery and Quantum Dot Imaging Using EGF Receptor Aptamer-conjugated Lipid Nanoparticles.
Scientific reports,
7(1), 9474.
https://doi.org/10.1038/s41598-017-09555-w
-
Tawiah, K. D., Porciani, D., & Burke, D. H. (2017). Toward the Selection of Cell Targeting Aptamers with Extended Biological Functionalities to Facilitate Endosomal Escape of Cargoes.
Biomedicines,
5(3), 51.
https://doi.org/10.3390/biomedicines5030051
-
Wang, W., Wang, P., Tang, X., Elzatahry, A. A., Wang, S., Al-Dahyan, D., Zhao, M., Yao, C., Hung, C. T., Zhu, X., Zhao, T., Li, X., Zhang, F., & Zhao, D. (2017). Facile Synthesis of Uniform Virus-like Mesoporous Silica Nanoparticles for Enhanced Cellular Internalization.
ACS central science,
3(8), 839–846.
https://doi.org/10.1021/acscentsci.7b00257
-
Lee, A., De Mei, C., Fereira, M., Marotta, R., Yoon, H. Y., Kim, K., Kwon, I. C., & Decuzzi, P. (2017). Dexamethasone-loaded Polymeric Nanoconstructs for Monitoring and Treating Inflammatory Bowel Disease.
Theranostics,
7(15), 3653–3666.
https://doi.org/10.7150/thno.18183
-
-
Ding, B., Wahid, M. A., Wang, Z., Xie, C., Thakkar, A., Prabhu, S., & Wang, J. (2017). Triptolide and celastrol loaded silk fibroin nanoparticles show synergistic effect against human pancreatic cancer cells.
Nanoscale,
9(32), 11739–11753.
https://doi.org/10.1039/c7nr03016a
-
Caprettini, V., Cerea, A., Melle, G., Lovato, L., Capozza, R., Huang, J. A., Tantussi, F., Dipalo, M., & De Angelis, F. (2017). Soft electroporation for delivering molecules into tightly adherent mammalian cells through 3D hollow nanoelectrodes.
Scientific reports,
7(1), 8524.
https://doi.org/10.1038/s41598-017-08886-y
-
Chen, G., Wang, Y., Xie, R., & Gong, S. (2017). Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery.
Journal of controlled release : official journal of the Controlled Release Society,
259, 105–114.
https://doi.org/10.1016/j.jconrel.2017.01.042
-
Xie, S., Manuguri, S., Proietti, G., Romson, J., Fu, Y., Inge, A. K., Wu, B., Zhang, Y., Häll, D., Ramström, O., & Yan, M. (2017). Design and synthesis of theranostic antibiotic nanodrugs that display enhanced antibacterial activity and luminescence.
Proceedings of the National Academy of Sciences of the United States of America,
114(32), 8464–8469.
https://doi.org/10.1073/pnas.1708556114
-
Yao, C., Rudnitzki, F., Hüttmann, G., Zhang, Z., & Rahmanzadeh, R. (2017). Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation.
International journal of nanomedicine,
12, 5659–5672.
https://doi.org/10.2147/IJN.S140620
-
Jabeen, N., Maqbool, Q., Sajjad, S., Minhas, A., Younas, U., Anwaar, S., Nazar, M., Kausar, R., & Hussain, S. Z. (2017). Biosynthesis and characterisation of nano-silica as potential system for carrying streptomycin at nano-scale drug delivery.
IET nanobiotechnology,
11(5), 557–561.
https://doi.org/10.1049/iet-nbt.2016.0106
-
Wei, G., Su, Z., Reynolds, N. P., Arosio, P., Hamley, I. W., Gazit, E., & Mezzenga, R. (2017). Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology.
Chemical Society reviews,
46(15), 4661–4708.
https://doi.org/10.1039/c6cs00542j
-
Singh, V. K., Saini, A., & Chandra, R. (2017). The Implications and Future Perspectives of Nanomedicine for Cancer Stem Cell Targeted Therapies.
Frontiers in molecular biosciences,
4, 52.
https://doi.org/10.3389/fmolb.2017.00052
-
Ahn, J., Sei, Y. J., Jeon, N. L., & Kim, Y. (2017). Tumor Microenvironment on a Chip: The Progress and Future Perspective.
Bioengineering (Basel, Switzerland),
4(3), 64.
https://doi.org/10.3390/bioengineering4030064
-
Singh, R., Patil, S., Singh, N., & Gupta, S. (2017). Dual functionality nanobioconjugates targeting intracellular bacteria in cancer cells with enhanced antimicrobial activity.
Scientific reports,
7(1), 5792.
https://doi.org/10.1038/s41598-017-06014-4
-
Ali, M., Wu, Y., Tang, Y., Xiao, H., Chen, K., Han, T., Fang, N., Wu, R., & El-Sayed, M. A. (2017). Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins.
Proceedings of the National Academy of Sciences of the United States of America,
114(28), E5655–E5663.
https://doi.org/10.1073/pnas.1703151114
-
Li, R., Zheng, K., Yuan, C., Chen, Z., & Huang, M. (2017). Be Active or Not: the Relative Contribution of Active and Passive Tumor Targeting of Nanomaterials.
Nanotheranostics,
1(4), 346–357.
https://doi.org/10.7150/ntno.19380
-
Palange, A. L., Palomba, R., Rizzuti, I. F., Ferreira, M., & Decuzzi, P. (2017). Deformable Discoidal Polymeric Nanoconstructs for the Precise Delivery of Therapeutic and Imaging Agents.
Molecular therapy : the journal of the American Society of Gene Therapy,
25(7), 1514–1521.
https://doi.org/10.1016/j.ymthe.2017.02.012
-
Mizrahy, S., Hazan-Halevy, I., Dammes, N., Landesman-Milo, D., & Peer, D. (2017). Current Progress in Non-viral RNAi-Based Delivery Strategies to Lymphocytes.
Molecular therapy : the journal of the American Society of Gene Therapy,
25(7), 1491–1500.
https://doi.org/10.1016/j.ymthe.2017.03.001
-
-
Bianco, J., Bastiancich, C., Jankovski, A., des Rieux, A., Préat, V., & Danhier, F. (2017). On glioblastoma and the search for a cure: where do we stand?.
Cellular and molecular life sciences : CMLS,
74(13), 2451–2466.
https://doi.org/10.1007/s00018-017-2483-3
-
Xue, J., Zhao, Z., Zhang, L., Xue, L., Shen, S., Wen, Y., Wei, Z., Wang, L., Kong, L., Sun, H., Ping, Q., Mo, R., & Zhang, C. (2017). Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence.
Nature nanotechnology,
12(7), 692–700.
https://doi.org/10.1038/nnano.2017.54
-
Yu, Z., Wang, M., Pan, W., Wang, H., Li, N., & Tang, B. (2017). Tumor microenvironment-triggered fabrication of gold nanomachines for tumor-specific photoacoustic imaging and photothermal therapy.
Chemical science,
8(7), 4896–4903.
https://doi.org/10.1039/c7sc00700k
-
Heo, J. Y., Kang, S. H., Kim, Y. H., You, S., Jin, K. S., Kim, S. W., Jung, H. Y., Jung, K. O., Lee, C. H., Kim, M. J., Sung, S. E., Kim, B., Choi, I. S., Youn, H., Chung, J. K., Kim, S. K., & Kim, Y. (2017). Toward redesigning the PEG surface of nanocarriers for tumor targeting: impact of inner functionalities on size, charge, multivalent binding, and biodistribution.
Chemical science,
8(7), 5186–5195.
https://doi.org/10.1039/c6sc05640g
-
Mukherjee, S., Dinda, H., Chakraborty, I., Bhattacharyya, R., Das Sarma, J., & Shunmugam, R. (2017). Engineering Camptothecin-Derived Norbornene Polymers for Theranostic Application.
ACS omega,
2(6), 2848–2857.
https://doi.org/10.1021/acsomega.7b00221
-
Irimie, A. I., Sonea, L., Jurj, A., Mehterov, N., Zimta, A. A., Budisan, L., Braicu, C., & Berindan-Neagoe, I. (2017). Future trends and emerging issues for nanodelivery systems in oral and oropharyngeal cancer.
International journal of nanomedicine,
12, 4593–4606.
https://doi.org/10.2147/IJN.S133219
-
Zhai, Y., Su, J., Ran, W., Zhang, P., Yin, Q., Zhang, Z., Yu, H., & Li, Y. (2017). Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy.
Theranostics,
7(10), 2575–2592.
https://doi.org/10.7150/thno.20118
-
Tavernaro, I., Cavelius, C., Peuschel, H., & Kraegeloh, A. (2017). Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy.
Beilstein journal of nanotechnology,
8, 1283–1296.
https://doi.org/10.3762/bjnano.8.130
-
Sobhani, Z., Behnam, M. A., Emami, F., Dehghanian, A., & Jamhiri, I. (2017). Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes.
International journal of nanomedicine,
12, 4509–4517.
https://doi.org/10.2147/IJN.S134661
-
Cui, Y., Song, X., Li, S., He, B., Yuan, L., Dai, W., Zhang, H., Wang, X., Yang, B., & Zhang, Q. (2017). The impact of receptor recycling on the exocytosis of αvβ3 integrin targeted gold nanoparticles.
Oncotarget,
8(24), 38618–38630.
https://doi.org/10.18632/oncotarget.16955
-
Yan, L., Miller, J., Yuan, M., Liu, J. F., Busch, T. M., Tsourkas, A., & Cheng, Z. (2017). Improved Photodynamic Therapy Efficacy of Protoporphyrin IX-Loaded Polymeric Micelles Using Erlotinib Pretreatment.
Biomacromolecules,
18(6), 1836–1844.
https://doi.org/10.1021/acs.biomac.7b00274
-
Mozar, F. S., & Chowdhury, E. H. (2017). Surface-Modification of Carbonate Apatite Nanoparticles Enhances Delivery and Cytotoxicity of Gemcitabine and Anastrozole in Breast Cancer Cells.
Pharmaceutics,
9(2), 21.
https://doi.org/10.3390/pharmaceutics9020021
-
Ganesh, A. N., Logie, J., McLaughlin, C. K., Barthel, B. L., Koch, T. H., Shoichet, B. K., & Shoichet, M. S. (2017). Leveraging Colloidal Aggregation for Drug-Rich Nanoparticle Formulations.
Molecular pharmaceutics,
14(6), 1852–1860.
https://doi.org/10.1021/acs.molpharmaceut.6b01015
-
Lee, S., Wang, C., Pan, H. C., Shrestha, S., Meyers, C., Ding, C., Shen, J., Chen, E., Lee, M., Soo, C., Ting, K., & James, A. W. (2017). Combining Smoothened Agonist and NEL-Like Protein-1 Enhances Bone Healing.
Plastic and reconstructive surgery,
139(6), 1385–1396.
https://doi.org/10.1097/PRS.0000000000003367
-
de la Puente, P., & Azab, A. K. (2017). Nanoparticle delivery systems, general approaches, and their implementation in multiple myeloma.
European journal of haematology,
98(6), 529–541.
https://doi.org/10.1111/ejh.12870
-
Mangal, S., Gao, W., Li, T., & Zhou, Q. T. (2017). Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities.
Acta pharmacologica Sinica,
38(6), 782–797.
https://doi.org/10.1038/aps.2017.34
-
Zaimy, M. A., Saffarzadeh, N., Mohammadi, A., Pourghadamyari, H., Izadi, P., Sarli, A., Moghaddam, L. K., Paschepari, S. R., Azizi, H., Torkamandi, S., & Tavakkoly-Bazzaz, J. (2017). New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles.
Cancer gene therapy,
24(6), 233–243.
https://doi.org/10.1038/cgt.2017.16
-
Yang, G., Wang, J., Li, D., & Zhou, S. (2017). Polyanhydride micelles with diverse morphologies for shape-regulated cellular internalization and blood circulation.
Regenerative biomaterials,
4(3), 149–157.
https://doi.org/10.1093/rb/rbw047
-
Gao, F., Zhang, J., Fu, C., Xie, X., Peng, F., You, J., Tang, H., Wang, Z., Li, P., & Chen, J. (2017). iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability.
International journal of nanomedicine,
12, 4147–4162.
https://doi.org/10.2147/IJN.S134148
-
Anderson, C. F., & Cui, H. (2017). Protease-Sensitive Nanomaterials for Cancer Therapeutics and Imaging.
Industrial & engineering chemistry research,
56(20), 5761–5777.
https://doi.org/10.1021/acs.iecr.7b00990
-
Elgqvist J. (2017). Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer.
International journal of molecular sciences,
18(5), 1102.
https://doi.org/10.3390/ijms18051102
-
Smith, J., Sprenger, K. G., Liao, R., Joseph, A., Nance, E., & Pfaendtner, J. (2017). Determining dominant driving forces affecting controlled protein release from polymeric nanoparticles.
Biointerphases,
12(2), 02D412.
https://doi.org/10.1116/1.4983154
-
Sun, Q., Ojha, T., Kiessling, F., Lammers, T., & Shi, Y. (2017). Enhancing Tumor Penetration of Nanomedicines.
Biomacromolecules,
18(5), 1449–1459.
https://doi.org/10.1021/acs.biomac.7b00068
-
Feng, G., Liu, J., Liu, R., Mao, D., Tomczak, N., & Liu, B. (2017). Ultrasmall Conjugated Polymer Nanoparticles with High Specificity for Targeted Cancer Cell Imaging.
Advanced science (Weinheim, Baden-Wurttemberg, Germany),
4(9), 1600407.
https://doi.org/10.1002/advs.201600407
-
Zhang, C., Ni, D., Liu, Y., Yao, H., Bu, W., & Shi, J. (2017). Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy.
Nature nanotechnology,
12(4), 378–386.
https://doi.org/10.1038/nnano.2016.280
-
Liu, X., Lin, P., Perrett, I., Lin, J., Liao, Y. P., Chang, C. H., Jiang, J., Wu, N., Donahue, T., Wainberg, Z., Nel, A. E., & Meng, H. (2017). Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer.
The Journal of clinical investigation,
127(5), 2007–2018.
https://doi.org/10.1172/JCI92284
-
Ali, M., Wu, Y., Ghosh, D., Do, B. H., Chen, K., Dawson, M. R., Fang, N., Sulchek, T. A., & El-Sayed, M. A. (2017). Nuclear Membrane-Targeted Gold Nanoparticles Inhibit Cancer Cell Migration and Invasion.
ACS nano,
11(4), 3716–3726.
https://doi.org/10.1021/acsnano.6b08345
-
Pei, X., Luo, F., Zhang, J., Chen, W., Jiang, C., & Liu, J. (2017). Dehydroascorbic Acids-modified Polymer Micelles Target Cancer Cells to Enhance Anti-tumor Efficacy of Paclitaxel.
Scientific reports,
7(1), 975.
https://doi.org/10.1038/s41598-017-01168-7
-
Mout, R., Ray, M., Lee, Y. W., Scaletti, F., & Rotello, V. M. (2017). In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges.
Bioconjugate chemistry,
28(4), 880–884.
https://doi.org/10.1021/acs.bioconjchem.7b00057
-
Abánades Lázaro, I., Haddad, S., Sacca, S., Orellana-Tavra, C., Fairen-Jimenez, D., & Forgan, R. S. (2017). Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery.
Chem,
2(4), 561–578.
https://doi.org/10.1016/j.chempr.2017.02.005
-
Wang, F., Lv, P., Gu, Y., Li, L., Ge, X., & Guo, G. (2017). Galectin-1 knockdown improves drug sensitivity of breast cancer by reducing P-glycoprotein expression through inhibiting the Raf-1/AP-1 signaling pathway.
Oncotarget,
8(15), 25097–25106.
https://doi.org/10.18632/oncotarget.15341
-
Tung, J., Tew, L. S., Hsu, Y. M., & Khung, Y. L. (2017). A novel 4-arm DNA/RNA Nanoconstruct triggering Rapid Apoptosis of Triple Negative Breast Cancer Cells within 24 hours.
Scientific reports,
7(1), 793.
https://doi.org/10.1038/s41598-017-00912-3
-
Luong, D., Sau, S., Kesharwani, P., & Iyer, A. K. (2017). Polyvalent Folate-Dendrimer-Coated Iron Oxide Theranostic Nanoparticles for Simultaneous Magnetic Resonance Imaging and Precise Cancer Cell Targeting.
Biomacromolecules,
18(4), 1197–1209.
https://doi.org/10.1021/acs.biomac.6b01885
-
Zhou, Q., Hou, Y., Zhang, L., Wang, J., Qiao, Y., Guo, S., Fan, L., Yang, T., Zhu, L., & Wu, H. (2017). Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity.
Theranostics,
7(7), 1806–1819.
https://doi.org/10.7150/thno.18607
-
Feng, Q., Shen, Y., Fu, Y., Muroski, M. E., Zhang, P., Wang, Q., Xu, C., Lesniak, M. S., Li, G., & Cheng, Y. (2017). Self-Assembly of Gold Nanoparticles Shows Microenvironment-Mediated Dynamic Switching and Enhanced Brain Tumor Targeting.
Theranostics,
7(7), 1875–1889.
https://doi.org/10.7150/thno.18985
-
Atukorale, P. U., Covarrubias, G., Bauer, L., & Karathanasis, E. (2017). Vascular targeting of nanoparticles for molecular imaging of diseased endothelium.
Advanced drug delivery reviews,
113, 141–156.
https://doi.org/10.1016/j.addr.2016.09.006
-
Wickens, J. M., Alsaab, H. O., Kesharwani, P., Bhise, K., Amin, M., Tekade, R. K., Gupta, U., & Iyer, A. K. (2017). Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy.
Drug discovery today,
22(4), 665–680.
https://doi.org/10.1016/j.drudis.2016.12.009
-
Khodabandehlou, K., Masehi-Lano, J. J., Poon, C., Wang, J., & Chung, E. J. (2017). Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis.
Experimental biology and medicine (Maywood, N.J.),
242(8), 799–812.
https://doi.org/10.1177/1535370217693116
-
Ray, M., Lee, Y. W., Scaletti, F., Yu, R., & Rotello, V. M. (2017). Intracellular delivery of proteins by nanocarriers.
Nanomedicine (London, England),
12(8), 941–952.
https://doi.org/10.2217/nnm-2016-0393
-
Qian, E. A., Wixtrom, A. I., Axtell, J. C., Saebi, A., Jung, D., Rehak, P., Han, Y., Moully, E. H., Mosallaei, D., Chow, S., Messina, M. S., Wang, J. Y., Royappa, A. T., Rheingold, A. L., Maynard, H. D., Král, P., & Spokoyny, A. M. (2017). Atomically precise organomimetic cluster nanomolecules assembled via perfluoroaryl-thiol SNAr chemistry.
Nature chemistry,
9(4), 333–340.
https://doi.org/10.1038/nchem.2686
-
Ljubimova, J. Y., Sun, T., Mashouf, L., Ljubimov, A. V., Israel, L. L., Ljubimov, V. A., Falahatian, V., & Holler, E. (2017). Covalent nano delivery systems for selective imaging and treatment of brain tumors.
Advanced drug delivery reviews,
113, 177–200.
https://doi.org/10.1016/j.addr.2017.06.002
-
Niazvand, F., Khorsandi, L., Abbaspour, M., Orazizadeh, M., Varaa, N., Maghzi, M., & Ahmadi, K. (2017). Curcumin-loaded poly lactic-co-glycolic acid nanoparticles effects on mono-iodoacetate -induced osteoarthritis in rats. Veterinary research forum : an international quarterly journal, 8(2), 155–161.
-
Ishijima, A., Minamihata, K., Yamaguchi, S., Yamahira, S., Ichikawa, R., Kobayashi, E., Iijima, M., Shibasaki, Y., Azuma, T., Nagamune, T., & Sakuma, I. (2017). Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro.
Scientific reports,
7, 44077.
https://doi.org/10.1038/srep44077
-
Huang, X., Liao, W., Zhang, G., Kang, S., & Zhang, C. Y. (2017). pH-sensitive micelles self-assembled from polymer brush (PAE-
g-cholesterol)-
b-PEG-
b-(PAE-
g-cholesterol) for anticancer drug delivery and controlled release.
International journal of nanomedicine,
12, 2215–2226.
https://doi.org/10.2147/IJN.S130037
-
Mitchell, M. J., Webster, J., Chung, A., Guimarães, P. P., Khan, O. F., & Langer, R. (2017). Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis.
Nature communications,
8, 14179.
https://doi.org/10.1038/ncomms14179
-
Raliya, R., Saha, D., Chadha, T. S., Raman, B., & Biswas, P. (2017). Non-invasive aerosol delivery and transport of gold nanoparticles to the brain.
Scientific reports,
7, 44718.
https://doi.org/10.1038/srep44718
-
Zhu, C., Zhang, S., Song, C., Zhang, Y., Ling, Q., Hoffmann, P. R., Li, J., Chen, T., Zheng, W., & Huang, Z. (2017). Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation.
Journal of nanobiotechnology,
15(1), 20.
https://doi.org/10.1186/s12951-017-0252-y
-
Tang, J., Pérez-Medina, C., Zhao, Y., Sadique, A., Mulder, W. J., & Reiner, T. (2017). A Comprehensive Procedure to Evaluate the In Vivo Performance of Cancer Nanomedicines.
Journal of visualized experiments : JoVE, (121), 55271.
https://doi.org/10.3791/55271
-
Wang, M., Glass, Z. A., & Xu, Q. (2017). Non-viral delivery of genome-editing nucleases for gene therapy.
Gene therapy,
24(3), 144–150.
https://doi.org/10.1038/gt.2016.72
-
Zhu, L., Staley, C., Kooby, D., El-Rays, B., Mao, H., & Yang, L. (2017). Current status of biomarker and targeted nanoparticle development: The precision oncology approach for pancreatic cancer therapy.
Cancer letters,
388, 139–148.
https://doi.org/10.1016/j.canlet.2016.11.030
-
Gowda, R., Kardos, G., Sharma, A., Singh, S., & Robertson, G. P. (2017). Nanoparticle-Based Celecoxib and Plumbagin for the Synergistic Treatment of Melanoma.
Molecular cancer therapeutics,
16(3), 440–452.
https://doi.org/10.1158/1535-7163.MCT-16-0285
-
Ellison, P. A., Chen, F., Goel, S., Barnhart, T. E., Nickles, R. J., DeJesus, O. T., & Cai, W. (2017). Intrinsic and Stable Conjugation of Thiolated Mesoporous Silica Nanoparticles with Radioarsenic.
ACS applied materials & interfaces,
9(8), 6772–6781.
https://doi.org/10.1021/acsami.6b14049
-
Huang, L., Zhang, Q., Dai, L., Shen, X., Chen, W., & Cai, K. (2017). Phenylboronic acid-modified hollow silica nanoparticles for dual-responsive delivery of doxorubicin for targeted tumor therapy.
Regenerative biomaterials,
4(2), 111–124.
https://doi.org/10.1093/rb/rbw045
-
-
Gao, X., Yu, T., Xu, G., Guo, G., Liu, X., Hu, X., Wang, X., Liu, Y., Mao, Q., You, C., & Zhou, L. (2017). Enhancing the anti-glioma therapy of doxorubicin by honokiol with biodegradable self-assembling micelles through multiple evaluations.
Scientific reports,
7, 43501.
https://doi.org/10.1038/srep43501
-
Dabrzalska, M., Janaszewska, A., Zablocka, M., Mignani, S., Majoral, J. P., & Klajnert-Maculewicz, B. (2017). Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity.
Molecules (Basel, Switzerland),
22(3), 345.
https://doi.org/10.3390/molecules22030345
-
Chen, G., Jaskula-Sztul, R., Esquibel, C. R., Lou, I., Zheng, Q., Dammalapati, A., Harrison, A., Eliceiri, K. W., Tang, W., Chen, H., & Gong, S. (2017). Neuroendocrine Tumor-Targeted Upconversion Nanoparticle-Based Micelles for Simultaneous NIR-Controlled Combination Chemotherapy and Photodynamic Therapy, and Fluorescence Imaging.
Advanced functional materials,
27(8), 1604671.
https://doi.org/10.1002/adfm.201604671
-
Li, J., Angsantikul, P., Liu, W., Esteban-Fernández de Ávila, B., Thamphiwatana, S., Xu, M., Sandraz, E., Wang, X., Delezuk, J., Gao, W., Zhang, L., & Wang, J. (2017). Micromotors Spontaneously Neutralize Gastric Acid for pH-Responsive Payload Release.
Angewandte Chemie (International ed. in English),
56(8), 2156–2161.
https://doi.org/10.1002/anie.201611774
-
Mirlekar, B., Gautam, D., & Chattopadhyay, S. (2017). Chromatin Remodeling Protein SMAR1 Is a Critical Regulator of T Helper Cell Differentiation and Inflammatory Diseases.
Frontiers in immunology,
8, 72.
https://doi.org/10.3389/fimmu.2017.00072
-
Wang, J., MacEwan, S. R., & Chilkoti, A. (2017). Quantitative Mapping of the Spatial Distribution of Nanoparticles in Endo-Lysosomes by Local pH.
Nano letters,
17(2), 1226–1232.
https://doi.org/10.1021/acs.nanolett.6b05041
-
Mizrahy, S., Hazan-Halevy, I., Landesman-Milo, D., Ng, B. D., & Peer, D. (2017). Advanced Strategies in Immune Modulation of Cancer Using Lipid-Based Nanoparticles.
Frontiers in immunology,
8, 69.
https://doi.org/10.3389/fimmu.2017.00069
-
Wang, Y., Cheetham, A. G., Angacian, G., Su, H., Xie, L., & Cui, H. (2017). Peptide-drug conjugates as effective prodrug strategies for targeted delivery.
Advanced drug delivery reviews,
110-111, 112–126.
https://doi.org/10.1016/j.addr.2016.06.015
-
Zhang, H., Ingham, E. S., Gagnon, M. K., Mahakian, L. M., Liu, J., Foiret, J. L., Willmann, J. K., & Ferrara, K. W. (2017). In vitro characterization and in vivo ultrasound molecular imaging of nucleolin-targeted microbubbles.
Biomaterials,
118, 63–73.
https://doi.org/10.1016/j.biomaterials.2016.11.026
-
Sanna, V., Singh, C. K., Jashari, R., Adhami, V. M., Chamcheu, J. C., Rady, I., Sechi, M., Mukhtar, H., & Siddiqui, I. A. (2017). Targeted nanoparticles encapsulating (-)-epigallocatechin-3-gallate for prostate cancer prevention and therapy.
Scientific reports,
7, 41573.
https://doi.org/10.1038/srep41573
-
-
Liang, P., Shi, H., Zhu, W., Gui, Q., Xu, Y., Meng, J., Guo, X., Gong, Z., & Chen, H. (2017). Silver nanoparticles enhance the sensitivity of temozolomide on human glioma cells.
Oncotarget,
8(5), 7533–7539.
https://doi.org/10.18632/oncotarget.13503
-
Luciano, M., Erfanzadeh, M., Zhou, F., Zhu, H., Bornhütter, T., Röder, B., Zhu, Q., & Brückner, C. (2017). In vivo photoacoustic tumor tomography using a quinoline-annulated porphyrin as NIR molecular contrast agent.
Organic & biomolecular chemistry,
15(4), 972–983.
https://doi.org/10.1039/c6ob02640k
-
Dong, X., Chu, D., & Wang, Z. (2017). Leukocyte-mediated Delivery of Nanotherapeutics in Inflammatory and Tumor Sites.
Theranostics,
7(3), 751–763.
https://doi.org/10.7150/thno.18069
-
Zulfiqar, B., Mahroo, A., Nasir, K., Farooq, R. K., Jalal, N., Rashid, M. U., & Asghar, K. (2017). Nanomedicine and cancer immunotherapy: focus on indoleamine 2,3-dioxygenase inhibitors.
OncoTargets and therapy,
10, 463–476.
https://doi.org/10.2147/OTT.S119362
-
Burns, J. M., Saager, R., Majaron, B., Jia, W., & Anvari, B. (2017). Optical properties of biomimetic probes engineered from erythrocytes.
Nanotechnology,
28(3), 035101.
https://doi.org/10.1088/1361-6528/28/3/035101
-
-
Wang, H., Dai, T., Zhou, S., Huang, X., Li, S., Sun, K., Zhou, G., & Dou, H. (2017). Self-Assembly Assisted Fabrication of Dextran-Based Nanohydrogels with Reduction-Cleavable Junctions for Applications as Efficient Drug Delivery Systems.
Scientific reports,
7, 40011.
https://doi.org/10.1038/srep40011
-
Wallat, J. D., Czapar, A. E., Wang, C., Wen, A. M., Wek, K. S., Yu, X., Steinmetz, N. F., & Pokorski, J. K. (2017). Optical and Magnetic Resonance Imaging Using Fluorous Colloidal Nanoparticles.
Biomacromolecules,
18(1), 103–112.
https://doi.org/10.1021/acs.biomac.6b01389
-
Ando, D., & Gopinathan, A. (2017). Cooperative Interactions between Different Classes of Disordered Proteins Play a Functional Role in the Nuclear Pore Complex of Baker's Yeast.
PloS one,
12(1), e0169455.
https://doi.org/10.1371/journal.pone.0169455
-
Jaskula-Sztul, R., Chen, G., Dammalapati, A., Harrison, A., Tang, W., Gong, S., & Chen, H. (2017). AB3-Loaded and Tumor-Targeted Unimolecular Micelles for Medullary Thyroid Cancer Treatment.
Journal of materials chemistry. B,
5(1), 151–159.
https://doi.org/10.1039/C6TB02530G
-
Chen, B., Dai, W., He, B., Zhang, H., Wang, X., Wang, Y., & Zhang, Q. (2017). Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment.
Theranostics,
7(3), 538–558.
https://doi.org/10.7150/thno.16684
-
-
Zhang, J., Zu, Y., Dhanasekara, C. S., Li, J., Wu, D., Fan, Z., & Wang, S. (2017). Detection and treatment of atherosclerosis using nanoparticles.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology,
9(1), 10.1002/wnan.1412.
https://doi.org/10.1002/wnan.1412
-
Xiao, B., Ma, L., & Merlin, D. (2017). Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer therapy.
Expert opinion on drug delivery,
14(1), 65–73.
https://doi.org/10.1080/17425247.2016.1205583
-
Liu, J. P., Wang, T. T., Wang, D. G., Dong, A. J., Li, Y. P., & Yu, H. J. (2017). Smart nanoparticles improve therapy for drug-resistant tumors by overcoming pathophysiological barriers.
Acta pharmacologica Sinica,
38(1), 1–8.
https://doi.org/10.1038/aps.2016.84
-
Yadavalli, T., & Shukla, D. (2017). Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections.
Nanomedicine : nanotechnology, biology, and medicine,
13(1), 219–230.
https://doi.org/10.1016/j.nano.2016.08.016
-
-
Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: progress, challenges and opportunities.
Nature reviews. Cancer,
17(1), 20–37.
https://doi.org/10.1038/nrc.2016.108
-
-
Valderrama, A., Reynoso, R., Gómez, R. W., Marquina, V., & Romero, M. (2017). Interactions of calcium with the external surfaces of fullerenes and endofullerenes doped with radioactive sodium iodide.
Journal of molecular modeling,
23(1), 15.
https://doi.org/10.1007/s00894-016-3187-6
-
Belz, J., Castilla-Ojo, N., Sridhar, S., & Kumar, R. (2017). Radiosensitizing Silica Nanoparticles Encapsulating Docetaxel for Treatment of Prostate Cancer.
Methods in molecular biology (Clifton, N.J.),
1530, 403–409.
https://doi.org/10.1007/978-1-4939-6646-2_26
-
-
-
Desai, V., & Bhushan, A. (2017). Natural Bioactive Compounds: Alternative Approach to the Treatment of Glioblastoma Multiforme.
BioMed research international,
2017, 9363040.
https://doi.org/10.1155/2017/9363040
-
Coclite, A., Mollica, H., Ranaldo, S., Pascazio, G., de Tullio, M. D., & Decuzzi, P. (2017). Predicting different adhesive regimens of circulating particles at blood capillary walls.
Microfluidics and nanofluidics,
21(11), 168.
https://doi.org/10.1007/s10404-017-2003-7
-
-
Song, Y., Li, Y., Xu, Q., & Liu, Z. (2016). Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook.
International journal of nanomedicine,
12, 87–110.
https://doi.org/10.2147/IJN.S117495
-
Wang, Q., Huang, J. Y., Li, H. Q., Zhao, A. Z., Wang, Y., Zhang, K. Q., Sun, H. T., & Lai, Y. K. (2016). Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications.
International journal of nanomedicine,
12, 151–165.
https://doi.org/10.2147/IJN.S117498
-
Rampersaud, S., Fang, J., Wei, Z., Fabijanic, K., Silver, S., Jaikaran, T., Ruiz, Y., Houssou, M., Yin, Z., Zheng, S., Hashimoto, A., Hoshino, A., Lyden, D., Mahajan, S., & Matsui, H. (2016). The Effect of Cage Shape on Nanoparticle-Based Drug Carriers: Anticancer Drug Release and Efficacy via Receptor Blockade Using Dextran-Coated Iron Oxide Nanocages.
Nano letters,
16(12), 7357–7363.
https://doi.org/10.1021/acs.nanolett.6b02577
-
Mehta, N., Lyon, J. G., Patil, K., Mokarram, N., Kim, C., & Bellamkonda, R. V. (2016). Bacterial Carriers for Glioblastoma Therapy.
Molecular therapy oncolytics,
4, 1–17.
https://doi.org/10.1016/j.omto.2016.12.003
-
Wang, M., Ravindranath, S. R., Rahim, M. K., Botvinick, E. L., & Haun, J. B. (2016). Evolution of Multivalent Nanoparticle Adhesion via Specific Molecular Interactions.
Langmuir : the ACS journal of surfaces and colloids,
32(49), 13124–13136.
https://doi.org/10.1021/acs.langmuir.6b03014
-
Yang, Y., Wang, A., Wei, Q., Schlesener, C., Haag, R., Li, Q., & Li, J. (2016). Hyperbranched Polyglycerol-Induced Porous Silica Nanoparticles as Drug Carriers for Cancer Therapy In Vitro and In Vivo.
ChemistryOpen,
6(1), 158–164.
https://doi.org/10.1002/open.201600072
-
Marciello, M., Pellico, J., Fernandez-Barahona, I., Herranz, F., Ruiz-Cabello, J., & Filice, M. (2016). Recent advances in the preparation and application of multifunctional iron oxide and liposome-based nanosystems for multimodal diagnosis and therapy.
Interface focus,
6(6), 20160055.
https://doi.org/10.1098/rsfs.2016.0055
-
Bygd, H. C., & Bratlie, K. M. (2016). Investigating the Synergistic Effects of Combined Modified Alginates on Macrophage Phenotype.
Polymers,
8(12), 422.
https://doi.org/10.3390/polym8120422
-
Rudnick-Glick, S., Corem-Salkmon, E., Grinberg, I., & Margel, S. (2016). Targeted drug delivery of near IR fluorescent doxorubicin-conjugated poly(ethylene glycol) bisphosphonate nanoparticles for diagnosis and therapy of primary and metastatic bone cancer in a mouse model.
Journal of nanobiotechnology,
14(1), 80.
https://doi.org/10.1186/s12951-016-0233-6
-
Laan, A. C., Santini, C., Jennings, L., de Jong, M., Bernsen, M. R., & Denkova, A. G. (2016). Radiolabeling polymeric micelles for in vivo evaluation: a novel, fast, and facile method.
EJNMMI research,
6(1), 12.
https://doi.org/10.1186/s13550-016-0167-x
-
Zhao, M. X., & Zhu, B. J. (2016). The Research and Applications of Quantum Dots as Nano-Carriers for Targeted Drug Delivery and Cancer Therapy.
Nanoscale research letters,
11(1), 207.
https://doi.org/10.1186/s11671-016-1394-9
-
Cao, L. B., Zeng, S., & Zhao, W. (2016). Highly Stable PEGylated Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for the Effective Delivery of Docetaxel in Prostate Cancers.
Nanoscale research letters,
11(1), 305.
https://doi.org/10.1186/s11671-016-1509-3
-
Santos, J. L., Ren, Y., Vandermark, J., Archang, M. M., Williford, J. M., Liu, H. W., Lee, J., Wang, T. H., & Mao, H. Q. (2016). Continuous Production of Discrete Plasmid DNA-Polycation Nanoparticles Using Flash Nanocomplexation.
Small (Weinheim an der Bergstrasse, Germany),
12(45), 6214–6222.
https://doi.org/10.1002/smll.201601425
-
Kamaly, N., He, J. C., Ausiello, D. A., & Farokhzad, O. C. (2016). Nanomedicines for renal disease: current status and future applications.
Nature reviews. Nephrology,
12(12), 738–753.
https://doi.org/10.1038/nrneph.2016.156
-
Khosravian, P., Shafiee Ardestani, M., Khoobi, M., Ostad, S. N., Dorkoosh, F. A., Akbari Javar, H., & Amanlou, M. (2016). Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel.
OncoTargets and therapy,
9, 7315–7330.
https://doi.org/10.2147/OTT.S113815
-
Zhang, X. Y., & Zhang, P. Y. (2016). Mitochondria targeting nano agents in cancer therapeutics.
Oncology letters,
12(6), 4887–4890.
https://doi.org/10.3892/ol.2016.5302 (Retraction published Oncol Lett. 2020 Nov;20(5):238)
-
Gargioni, E., Schulz, F., Raabe, A., Burdak-Rothkamm, S., Rieckmann, T., & Rothkamm, K. (2016). Targeted nanoparticles for tumour radiotherapy enhancement-the long dawn of a golden era?.
Annals of translational medicine,
4(24), 523.
https://doi.org/10.21037/atm.2016.12.46
-
Chen, C. C., Liu, L., Ma, F., Wong, C. W., Guo, X. E., Chacko, J. V., Farhoodi, H. P., Zhang, S. X., Zimak, J., Ségaliny, A., Riazifar, M., Pham, V., Digman, M. A., Pone, E. J., & Zhao, W. (2016). Elucidation of Exosome Migration across the Blood-Brain Barrier Model In Vitro.
Cellular and molecular bioengineering,
9(4), 509–529.
https://doi.org/10.1007/s12195-016-0458-3
-
-
Karandish, F., Haldar, M. K., You, S., Brooks, A. E., Brooks, B. D., Guo, B., Choi, Y., & Mallik, S. (2016). Prostate-Specific Membrane Antigen Targeted Polymersomes for Delivering Mocetinostat and Docetaxel to Prostate Cancer Cell Spheroids.
ACS omega,
1(5), 952–962.
https://doi.org/10.1021/acsomega.6b00126
-
Mukherjee, S., Das Sarma, J., & Shunmugam, R. (2016). pH-Sensitive Nanoaggregates for Site-Specific Drug-Delivery as Well as Cancer Cell Imaging.
ACS omega,
1(5), 755–764.
https://doi.org/10.1021/acsomega.6b00167
-
Yu, G., Cook, T. R., Li, Y., Yan, X., Wu, D., Shao, L., Shen, J., Tang, G., Huang, F., Chen, X., & Stang, P. J. (2016). Tetraphenylethene-based highly emissive metallacage as a component of theranostic supramolecular nanoparticles.
Proceedings of the National Academy of Sciences of the United States of America,
113(48), 13720–13725.
https://doi.org/10.1073/pnas.1616836113
-
Jo, M. R., Yu, J., Kim, H. J., Song, J. H., Kim, K. M., Oh, J. M., & Choi, S. J. (2016). Titanium Dioxide Nanoparticle-Biomolecule Interactions Influence Oral Absorption.
Nanomaterials (Basel, Switzerland),
6(12), 225.
https://doi.org/10.3390/nano6120225
-
Wang, F., Li, C., Cheng, J., & Yuan, Z. (2016). Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents.
International journal of environmental research and public health,
13(12), 1182.
https://doi.org/10.3390/ijerph13121182
-
Xia, H., Li, F., Hu, X., Park, W., Wang, S., Jang, Y., Du, Y., Baik, S., Cho, S., Kang, T., Kim, D. H., Ling, D., Hui, K. M., & Hyeon, T. (2016). pH-Sensitive Pt Nanocluster Assembly Overcomes Cisplatin Resistance and Heterogeneous Stemness of Hepatocellular Carcinoma.
ACS central science,
2(11), 802–811.
https://doi.org/10.1021/acscentsci.6b00197
-
Edmonds, S., Volpe, A., Shmeeda, H., Parente-Pereira, A. C., Radia, R., Baguña-Torres, J., Szanda, I., Severin, G. W., Livieratos, L., Blower, P. J., Maher, J., Fruhwirth, G. O., Gabizon, A., & T M de Rosales, R. (2016). Exploiting the Metal-Chelating Properties of the Drug Cargo for In Vivo Positron Emission Tomography Imaging of Liposomal Nanomedicines.
ACS nano,
10(11), 10294–10307.
https://doi.org/10.1021/acsnano.6b05935
-
Shi, Y., Shi, B., Dass, A. V., Lu, Y., Sayyadi, N., Kautto, L., Willows, R. D., Chung, R., Piper, J., Nevalainen, H., Walsh, B., Jin, D., & Packer, N. H. (2016). Stable Upconversion Nanohybrid Particles for Specific Prostate Cancer Cell Immunodetection.
Scientific reports,
6, 37533.
https://doi.org/10.1038/srep37533
-
Sayour, E. J., De Leon, G., Pham, C., Grippin, A., Kemeny, H., Chua, J., Huang, J., Sampson, J. H., Sanchez-Perez, L., Flores, C., & Mitchell, D. A. (2016). Systemic activation of antigen-presenting cells via RNA-loaded nanoparticles.
Oncoimmunology,
6(1), e1256527.
https://doi.org/10.1080/2162402X.2016.1256527
-
Karimi, M., Mirshekari, H., Moosavi Basri, S. M., Bahrami, S., Moghoofei, M., & Hamblin, M. R. (2016). Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos.
Advanced drug delivery reviews,
106(Pt A), 45–62.
https://doi.org/10.1016/j.addr.2016.03.003
-
Thaxton, C. S., Rink, J. S., Naha, P. C., & Cormode, D. P. (2016). Lipoproteins and lipoprotein mimetics for imaging and drug delivery.
Advanced drug delivery reviews,
106(Pt A), 116–131.
https://doi.org/10.1016/j.addr.2016.04.020
-
Yaari, Z., da Silva, D., Zinger, A., Goldman, E., Kajal, A., Tshuva, R., Barak, E., Dahan, N., Hershkovitz, D., Goldfeder, M., Roitman, J. S., & Schroeder, A. (2016). Theranostic barcoded nanoparticles for personalized cancer medicine.
Nature communications,
7, 13325.
https://doi.org/10.1038/ncomms13325
-
Poon, C., Duan, X., Chan, C., Han, W., & Lin, W. (2016). Nanoscale Coordination Polymers Codeliver Carboplatin and Gemcitabine for Highly Effective Treatment of Platinum-Resistant Ovarian Cancer.
Molecular pharmaceutics,
13(11), 3665–3675.
https://doi.org/10.1021/acs.molpharmaceut.6b00466
-
Mi, Y., Wolfram, J., Mu, C., Liu, X., Blanco, E., Shen, H., & Ferrari, M. (2016). Enzyme-responsive multistage vector for drug delivery to tumor tissue.
Pharmacological research,
113(Pt A), 92–99.
https://doi.org/10.1016/j.phrs.2016.08.024
-
Ye, H., Liu, X., Sun, J., Zhu, S., Zhu, Y., & Chang, S. (2016). Enhanced therapeutic efficacy of LHRHa-targeted brucea javanica oil liposomes for ovarian cancer.
BMC cancer,
16(1), 831.
https://doi.org/10.1186/s12885-016-2870-4
-
Yu, M., Wu, J., Shi, J., & Farokhzad, O. C. (2016). Nanotechnology for protein delivery: Overview and perspectives.
Journal of controlled release : official journal of the Controlled Release Society,
240, 24–37.
https://doi.org/10.1016/j.jconrel.2015.10.012
-
Cho, H., Gao, J., & Kwon, G. S. (2016). PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery.
Journal of controlled release : official journal of the Controlled Release Society,
240, 191–201.
https://doi.org/10.1016/j.jconrel.2015.12.015
-
Yao, V. J., D'Angelo, S., Butler, K. S., Theron, C., Smith, T. L., Marchiò, S., Gelovani, J. G., Sidman, R. L., Dobroff, A. S., Brinker, C. J., Bradbury, A., Arap, W., & Pasqualini, R. (2016). Ligand-targeted theranostic nanomedicines against cancer.
Journal of controlled release : official journal of the Controlled Release Society,
240, 267–286.
https://doi.org/10.1016/j.jconrel.2016.01.002
-
Zhang, R. X., Wong, H. L., Xue, H. Y., Eoh, J. Y., & Wu, X. Y. (2016). Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives.
Journal of controlled release : official journal of the Controlled Release Society,
240, 489–503.
https://doi.org/10.1016/j.jconrel.2016.06.012
-
Chen, Q., Long, M., Qiu, L., Zhu, M., Li, Z., Qiao, M., Hu, H., Zhao, X., & Chen, D. (2016). Decoration of pH-sensitive copolymer micelles with tumor-specific peptide for enhanced cellular uptake of doxorubicin.
International journal of nanomedicine,
11, 5415–5427.
https://doi.org/10.2147/IJN.S111950
-
Refuerzo, J. S., Leonard, F., Bulayeva, N., Gorenstein, D., Chiossi, G., Ontiveros, A., Longo, M., & Godin, B. (2016). Uterus-targeted liposomes for preterm labor management: studies in pregnant mice.
Scientific reports,
6, 34710.
https://doi.org/10.1038/srep34710
-
Lee, B. R., Ko, H. K., Ryu, J. H., Ahn, K. Y., Lee, Y. H., Oh, S. J., Na, J. H., Kim, T. W., Byun, Y., Kwon, I. C., Kim, K., & Lee, J. (2016). Engineered Human Ferritin Nanoparticles for Direct Delivery of Tumor Antigens to Lymph Node and Cancer Immunotherapy.
Scientific reports,
6, 35182.
https://doi.org/10.1038/srep35182
-
Jiang, D., England, C. G., & Cai, W. (2016). DNA nanomaterials for preclinical imaging and drug delivery.
Journal of controlled release : official journal of the Controlled Release Society,
239, 27–38.
https://doi.org/10.1016/j.jconrel.2016.08.013
-
Wang, S., Lin, J., Wang, T., Chen, X., & Huang, P. (2016). Recent Advances in Photoacoustic Imaging for Deep-Tissue Biomedical Applications.
Theranostics,
6(13), 2394–2413.
https://doi.org/10.7150/thno.16715
-
Hu, D., Mezghrani, O., Zhang, L., Chen, Y., Ke, X., & Ci, T. (2016). GE11 peptide modified and reduction-responsive hyaluronic acid-based nanoparticles induced higher efficacy of doxorubicin for breast carcinoma therapy.
International journal of nanomedicine,
11, 5125–5147.
https://doi.org/10.2147/IJN.S113469
-
Åberg, C., Varela, J. A., Fitzpatrick, L. W., & Dawson, K. A. (2016). Spatial and Structural Metrics for Living Cells Inspired by Statistical Mechanics.
Scientific reports,
6, 34457.
https://doi.org/10.1038/srep34457
-
Oh, M., Hu, C., Urfano, S. F., Arostegui, M., & Slowinska, K. (2016). Thermoresponsive Collagen/Cell Penetrating Hybrid Peptide as Nanocarrier in Targeting-Free Cell Selection and Uptake.
Analytical chemistry,
88(19), 9654–9661.
https://doi.org/10.1021/acs.analchem.6b02438
-
-
Kang, H., Gravier, J., Bao, K., Wada, H., Lee, J. H., Baek, Y., El Fakhri, G., Gioux, S., Rubin, B. P., Coll, J. L., & Choi, H. S. (2016). Renal Clearable Organic Nanocarriers for Bioimaging and Drug Delivery.
Advanced materials (Deerfield Beach, Fla.),
28(37), 8162–8168.
https://doi.org/10.1002/adma.201601101
-
Freudenberg, U., Liang, Y., Kiick, K. L., & Werner, C. (2016). Glycosaminoglycan-Based Biohybrid Hydrogels: A Sweet and Smart Choice for Multifunctional Biomaterials.
Advanced materials (Deerfield Beach, Fla.),
28(40), 8861–8891.
https://doi.org/10.1002/adma.201601908
-
Carter, K. A., Luo, D., Razi, A., Geng, J., Shao, S., Ortega, J., & Lovell, J. F. (2016). Sphingomyelin Liposomes Containing Porphyrin-phospholipid for Irinotecan Chemophototherapy.
Theranostics,
6(13), 2329–2336.
https://doi.org/10.7150/thno.15701
-
Chu, B., Zhang, L., Qu, Y., Chen, X., Peng, J., Huang, Y., & Qian, Z. (2016). Synthesis, characterization and drug loading property of Monomethoxy-Poly(ethylene glycol)-Poly(ε-caprolactone)-Poly(D,L-lactide) (MPEG-PCLA) copolymers.
Scientific reports,
6, 34069.
https://doi.org/10.1038/srep34069
-
Liu, H., Zhao, M., Wang, J., Pang, M., Wu, Z., Zhao, L., Yin, Z., & Hong, Z. (2016). Photodynamic therapy of tumors with pyropheophorbide-
a-loaded polyethylene glycol-poly(lactic-
co-glycolic acid) nanoparticles.
International journal of nanomedicine,
11, 4905–4918.
https://doi.org/10.2147/IJN.S112541
-
Kenry, Yeo, J. C., & Lim, C. T. (2016). Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications.
Microsystems & nanoengineering,
2, 16043.
https://doi.org/10.1038/micronano.2016.43
-
Xu, L., Qiu, X., Zhang, Y., Cao, K., Zhao, X., Wu, J., Hu, Y., & Guo, H. (2016). Liposome encapsulated perfluorohexane enhances radiotherapy in mice without additional oxygen supply.
Journal of translational medicine,
14, 268.
https://doi.org/10.1186/s12967-016-1033-3
-
Feng, S., Zhang, H., Yan, T., Huang, D., Zhi, C., Nakanishi, H., & Gao, X. D. (2016). Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs.
International journal of nanomedicine,
11, 4573–4582.
https://doi.org/10.2147/IJN.S110689
-
Aldea, M., Florian, I. A., Kacso, G., Craciun, L., Boca, S., Soritau, O., & Florian, I. S. (2016). Nanoparticles for Targeting Intratumoral Hypoxia: Exploiting a Potential Weakness of Glioblastoma.
Pharmaceutical research,
33(9), 2059–2077.
https://doi.org/10.1007/s11095-016-1947-8
-
Yoshii, T., Geng, Y., Peyton, S., Mercurio, A. M., & Rotello, V. M. (2016). Biochemical and biomechanical drivers of cancer cell metastasis, drug response and nanomedicine.
Drug discovery today,
21(9), 1489–1494.
https://doi.org/10.1016/j.drudis.2016.05.011
-
Wang, S., Huang, P., & Chen, X. (2016). Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization.
Advanced materials (Deerfield Beach, Fla.),
28(34), 7340–7364.
https://doi.org/10.1002/adma.201601498
-
Park, J., Kadasala, N. R., Abouelmagd, S. A., Castanares, M. A., Collins, D. S., Wei, A., & Yeo, Y. (2016). Polymer-iron oxide composite nanoparticles for EPR-independent drug delivery.
Biomaterials,
101, 285–295.
https://doi.org/10.1016/j.biomaterials.2016.06.007
-
Cheheltani, R., Ezzibdeh, R. M., Chhour, P., Pulaparthi, K., Kim, J., Jurcova, M., Hsu, J. C., Blundell, C., Litt, H. I., Ferrari, V. A., Allcock, H. R., Sehgal, C. M., & Cormode, D. P. (2016). Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging.
Biomaterials,
102, 87–97.
https://doi.org/10.1016/j.biomaterials.2016.06.015
-
Bouchaala, R., Mercier, L., Andreiuk, B., Mély, Y., Vandamme, T., Anton, N., Goetz, J. G., & Klymchenko, A. S. (2016). Integrity of lipid nanocarriers in bloodstream and tumor quantified by near-infrared ratiometric FRET imaging in living mice.
Journal of controlled release : official journal of the Controlled Release Society,
236, 57–67.
https://doi.org/10.1016/j.jconrel.2016.06.027
-
Zhu, C., Yang, C., Wang, Y., Lin, G., Yang, Y., Wang, X., Zhu, J., Chen, X., Lu, X., Liu, G., & Xia, H. (2016). CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties.
Science advances,
2(8), e1601031.
https://doi.org/10.1126/sciadv.1601031
-
Karimi, M., Sahandi Zangabad, P., Ghasemi, A., Amiri, M., Bahrami, M., Malekzad, H., Ghahramanzadeh Asl, H., Mahdieh, Z., Bozorgomid, M., Ghasemi, A., Rahmani Taji Boyuk, M. R., & Hamblin, M. R. (2016). Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances.
ACS applied materials & interfaces,
8(33), 21107–21133.
https://doi.org/10.1021/acsami.6b00371
-
Cheng, L., Kamkaew, A., Sun, H., Jiang, D., Valdovinos, H. F., Gong, H., England, C. G., Goel, S., Barnhart, T. E., & Cai, W. (2016). Dual-Modality Positron Emission Tomography/Optical Image-Guided Photodynamic Cancer Therapy with Chlorin e6-Containing Nanomicelles.
ACS nano,
10(8), 7721–7730.
https://doi.org/10.1021/acsnano.6b03074
-
Li, F., Zheng, C., Xin, J., Chen, F., Ling, H., Sun, L., Webster, T. J., Ming, X., & Liu, J. (2016). Enhanced tumor delivery and antitumor response of doxorubicin-loaded albumin nanoparticles formulated based on a Schiff base.
International journal of nanomedicine,
11, 3875–3890.
https://doi.org/10.2147/IJN.S108689
-
Donovan, A. J., Kalkowski, J., Szymusiak, M., Wang, C., Smith, S. A., Klie, R. F., Morrissey, J. H., & Liu, Y. (2016). Artificial Dense Granules: A Procoagulant Liposomal Formulation Modeled after Platelet Polyphosphate Storage Pools.
Biomacromolecules,
17(8), 2572–2581.
https://doi.org/10.1021/acs.biomac.6b00577
-
Jiang, X., Bugno, J., Hu, C., Yang, Y., Herold, T., Qi, J., Chen, P., Gurbuxani, S., Arnovitz, S., Strong, J., Ferchen, K., Ulrich, B., Weng, H., Wang, Y., Huang, H., Li, S., Neilly, M. B., Larson, R. A., Le Beau, M. M., Bohlander, S. K., … Chen, J. (2016). Eradication of Acute Myeloid Leukemia with FLT3 Ligand-Targeted miR-150 Nanoparticles.
Cancer research,
76(15), 4470–4480.
https://doi.org/10.1158/0008-5472.CAN-15-2949
-
Chen, G., Jaskula-Sztul, R., Harrison, A., Dammalapati, A., Xu, W., Cheng, Y., Chen, H., & Gong, S. (2016). KE108-conjugated unimolecular micelles loaded with a novel HDAC inhibitor thailandepsin-A for targeted neuroendocrine cancer therapy.
Biomaterials,
97, 22–33.
https://doi.org/10.1016/j.biomaterials.2016.04.029
-
Pan, Z. Z., Wang, H. Y., Zhang, M., Lin, T. T., Zhang, W. Y., Zhao, P. F., Tang, Y. S., Xiong, Y., Zeng, Y. E., & Huang, Y. Z. (2016). Nuclear-targeting TAT-PEG-Asp8-doxorubicin polymeric nanoassembly to overcome drug-resistant colon cancer.
Acta pharmacologica Sinica,
37(8), 1110–1120.
https://doi.org/10.1038/aps.2016.48
-
Li, F., Zhou, X., Zhou, H., Jia, J., Li, L., Zhai, S., & Yan, B. (2016). Reducing Both Pgp Overexpression and Drug Efflux with Anti-Cancer Gold-Paclitaxel Nanoconjugates.
PloS one,
11(7), e0160042.
https://doi.org/10.1371/journal.pone.0160042
-
Pearson, R. M., Sen, S., Hsu, H. J., Pasko, M., Gaske, M., Král, P., & Hong, S. (2016). Tuning the Selectivity of Dendron Micelles Through Variations of the Poly(ethylene glycol) Corona.
ACS nano,
10(7), 6905–6914.
https://doi.org/10.1021/acsnano.6b02708
-
Liu, Y., Xu, Y., Wu, M., Fan, L., He, C., Wan, J. B., Li, P., Chen, M., & Li, H. (2016). Vitamin E succinate-conjugated F68 micelles for mitoxantrone delivery in enhancing anticancer activity.
International journal of nanomedicine,
11, 3167–3178.
https://doi.org/10.2147/IJN.S103556
-
Saini, P., Ganugula, R., Arora, M., & Kumar, M. N. (2016). The Next Generation Non-competitive Active Polyester Nanosystems for Transferrin Receptor-mediated Peroral Transport Utilizing Gambogic Acid as a Ligand.
Scientific reports,
6, 29501.
https://doi.org/10.1038/srep29501
-
Majzoub, R. N., Wonder, E., Ewert, K. K., Kotamraju, V. R., Teesalu, T., & Safinya, C. R. (2016). Rab11 and Lysotracker Markers Reveal Correlation between Endosomal Pathways and Transfection Efficiency of Surface-Functionalized Cationic Liposome-DNA Nanoparticles.
The journal of physical chemistry. B,
120(26), 6439–6453.
https://doi.org/10.1021/acs.jpcb.6b04441
-
Dogra, N., Izadi, H., & Vanderlick, T. K. (2016). Micro-motors: A motile bacteria based system for liposome cargo transport.
Scientific reports,
6, 29369.
https://doi.org/10.1038/srep29369
-
Lv, Y., Hao, L., Hu, W., Ran, Y., Bai, Y., & Zhang, L. (2016). Novel multifunctional pH-sensitive nanoparticles loaded into microbubbles as drug delivery vehicles for enhanced tumor targeting.
Scientific reports,
6, 29321.
https://doi.org/10.1038/srep29321
-
Ortega-Guerrero, A., Espinosa-Duran, J. M., & Velasco-Medina, J. (2016). TRPV1 channel as a target for cancer therapy using CNT-based drug delivery systems.
European biophysics journal : EBJ,
45(5), 423–433.
https://doi.org/10.1007/s00249-016-1111-8
-
Ilekis, J. V., Tsilou, E., Fisher, S., Abrahams, V. M., Soares, M. J., Cross, J. C., Zamudio, S., Illsley, N. P., Myatt, L., Colvis, C., Costantine, M. M., Haas, D. M., Sadovsky, Y., Weiner, C., Rytting, E., & Bidwell, G. (2016). Placental origins of adverse pregnancy outcomes: potential molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.
American journal of obstetrics and gynecology,
215(1 Suppl), S1–S46.
https://doi.org/10.1016/j.ajog.2016.03.001
-
Toro-Córdova, A., Ledezma-Gallegos, F., Mondragon-Fuentes, L., Jurado, R., Medina, L. A., Pérez-Rojas, J. M., & Garcia-Lopez, P. (2016). Determination of Liposomal Cisplatin by High-Performance Liquid Chromatography and Its Application in Pharmacokinetic Studies.
Journal of chromatographic science,
54(6), 1016–1021.
https://doi.org/10.1093/chromsci/bmw039
-
Zhao, P., Xia, G., Dong, S., Jiang, Z. X., & Chen, M. (2016). An iTEP-salinomycin nanoparticle that specifically and effectively inhibits metastases of 4T1 orthotopic breast tumors.
Biomaterials,
93, 1–9.
https://doi.org/10.1016/j.biomaterials.2016.03.032
-
Pang, B., Yang, X., & Xia, Y. (2016). Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics.
Nanomedicine (London, England),
11(13), 1715–1728.
https://doi.org/10.2217/nnm-2016-0109
-
Ramakrishnan, N., Tourdot, R. W., Eckmann, D. M., Ayyaswamy, P. S., Muzykantov, V. R., & Radhakrishnan, R. (2016). Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of protein expression and mechanical factors.
Royal Society open science,
3(6), 160260.
https://doi.org/10.1098/rsos.160260
-
Ma, Y., Mou, Q., Sun, M., Yu, C., Li, J., Huang, X., Zhu, X., Yan, D., & Shen, J. (2016). Cancer Theranostic Nanoparticles Self-Assembled from Amphiphilic Small Molecules with Equilibrium Shift-Induced Renal Clearance.
Theranostics,
6(10), 1703–1716.
https://doi.org/10.7150/thno.15647
-
Subiel, A., Ashmore, R., & Schettino, G. (2016). Standards and Methodologies for Characterizing Radiobiological Impact of High-Z Nanoparticles.
Theranostics,
6(10), 1651–1671.
https://doi.org/10.7150/thno.15019
-
Xing, H., Hwang, K., & Lu, Y. (2016). Recent Developments of Liposomes as Nanocarriers for Theranostic Applications.
Theranostics,
6(9), 1336–1352.
https://doi.org/10.7150/thno.15464
-
Jo, S. D., Ku, S. H., Won, Y. Y., Kim, S. H., & Kwon, I. C. (2016). Targeted Nanotheranostics for Future Personalized Medicine: Recent Progress in Cancer Therapy.
Theranostics,
6(9), 1362–1377.
https://doi.org/10.7150/thno.15335
-
Huang, J., Li, Y., Orza, A., Lu, Q., Guo, P., Wang, L., Yang, L., & Mao, H. (2016). Magnetic Nanoparticle Facilitated Drug Delivery for Cancer Therapy with Targeted and Image-Guided Approaches.
Advanced functional materials,
26(22), 3818–3836.
https://doi.org/10.1002/adfm.201504185
-
Jin, Z., Lv, Y., Cao, H., Yao, J., Zhou, J., He, W., & Yin, L. (2016). Core-shell nanocarriers with high paclitaxel loading for passive and active targeting.
Scientific reports,
6, 27559.
https://doi.org/10.1038/srep27559
-
-
Jaskula-Sztul, R., Xu, W., Chen, G., Harrison, A., Dammalapati, A., Nair, R., Cheng, Y., Gong, S., & Chen, H. (2016). Thailandepsin A-loaded and octreotide-functionalized unimolecular micelles for targeted neuroendocrine cancer therapy.
Biomaterials,
91, 1–10.
https://doi.org/10.1016/j.biomaterials.2016.03.010
-
Yildirim, A., Chattaraj, R., Blum, N. T., Goldscheitter, G. M., & Goodwin, A. P. (2016). Stable Encapsulation of Air in Mesoporous Silica Nanoparticles: Fluorocarbon-Free Nanoscale Ultrasound Contrast Agents.
Advanced healthcare materials,
5(11), 1290–1298.
https://doi.org/10.1002/adhm.201600030
-
Levy, O., Brennen, W. N., Han, E., Rosen, D. M., Musabeyezu, J., Safaee, H., Ranganath, S., Ngai, J., Heinelt, M., Milton, Y., Wang, H., Bhagchandani, S. H., Joshi, N., Bhowmick, N., Denmeade, S. R., Isaacs, J. T., & Karp, J. M. (2016). A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer.
Biomaterials,
91, 140–150.
https://doi.org/10.1016/j.biomaterials.2016.03.023
-
Bendale, Y., Bendale, V., Natu, R., & Paul, S. (2016). Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo: -In vitro and in vivo Anticancer Activity of bio-Pt NPs.
Journal of pharmacopuncture,
19(2), 114–121.
https://doi.org/10.3831/KPI.2016.19.012
-
Lv, L., Liu, C., Chen, C., Yu, X., Chen, G., Shi, Y., Qin, F., Ou, J., Qiu, K., & Li, G. (2016). Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer.
Oncotarget,
7(22), 32184–32199.
https://doi.org/10.18632/oncotarget.8607
-
Piktel, E., Niemirowicz, K., Wątek, M., Wollny, T., Deptuła, P., & Bucki, R. (2016). Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.
Journal of nanobiotechnology,
14(1), 39.
https://doi.org/10.1186/s12951-016-0193-x
-
Yang, R., Liu, P., Pan, D., Zhang, P., Bai, Z., Xu, Y., Wang, L., Yan, J., Yan, Y., Liu, X., & Yang, M. (2016). An Investigation on a Novel Anti-tumor Fusion Peptide of FSH33-53-IIKK.
Journal of Cancer,
7(8), 1010–1019.
https://doi.org/10.7150/jca.14425
-
Zhang, Y., Song, W., Geng, J., Chitgupi, U., Unsal, H., Federizon, J., Rzayev, J., Sukumaran, D. K., Alexandridis, P., & Lovell, J. F. (2016). Therapeutic surfactant-stripped frozen micelles.
Nature communications,
7, 11649.
https://doi.org/10.1038/ncomms11649
-
Kesner, E. E., Saada-Reich, A., & Lorberboum-Galski, H. (2016). Characteristics of Mitochondrial Transformation into Human Cells.
Scientific reports,
6, 26057.
https://doi.org/10.1038/srep26057
-
Liang, P. C., Chen, Y. C., Chiang, C. F., Mo, L. R., Wei, S. Y., Hsieh, W. Y., & Lin, W. L. (2016). Doxorubicin-modified magnetic nanoparticles as a drug delivery system for magnetic resonance imaging-monitoring magnet-enhancing tumor chemotherapy.
International journal of nanomedicine,
11, 2021–2037.
https://doi.org/10.2147/IJN.S94139
-
Kalber, T. L., Ordidge, K. L., Southern, P., Loebinger, M. R., Kyrtatos, P. G., Pankhurst, Q. A., Lythgoe, M. F., & Janes, S. M. (2016). Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles.
International journal of nanomedicine,
11, 1973–1983.
https://doi.org/10.2147/IJN.S94255
-
-
Qian, C., Yu, J., Chen, Y., Hu, Q., Xiao, X., Sun, W., Wang, C., Feng, P., Shen, Q. D., & Gu, Z. (2016). Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy.
Advanced materials (Deerfield Beach, Fla.),
28(17), 3313–3320.
https://doi.org/10.1002/adma.201505869
-
Pitek, A. S., Jameson, S. A., Veliz, F. A., Shukla, S., & Steinmetz, N. F. (2016). Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics.
Biomaterials,
89, 89–97.
https://doi.org/10.1016/j.biomaterials.2016.02.032
-
Shukla, S., & Steinmetz, N. F. (2016). Emerging nanotechnologies for cancer immunotherapy.
Experimental biology and medicine (Maywood, N.J.),
241(10), 1116–1126.
https://doi.org/10.1177/1535370216647123
-
Luk, B. T., Fang, R. H., Hu, C. M., Copp, J. A., Thamphiwatana, S., Dehaini, D., Gao, W., Zhang, K., Li, S., & Zhang, L. (2016). Safe and Immunocompatible Nanocarriers Cloaked in RBC Membranes for Drug Delivery to Treat Solid Tumors.
Theranostics,
6(7), 1004–1011.
https://doi.org/10.7150/thno.14471
-
Song, W., Tang, Z., Zhang, D., Wen, X., Lv, S., Liu, Z., Deng, M., & Chen, X. (2016). Solid Tumor Therapy Using a Cannon and Pawn Combination Strategy.
Theranostics,
6(7), 1023–1030.
https://doi.org/10.7150/thno.14741
-
Qian, C., Chen, Y., Zhu, S., Yu, J., Zhang, L., Feng, P., Tang, X., Hu, Q., Sun, W., Lu, Y., Xiao, X., Shen, Q. D., & Gu, Z. (2016). ATP-Responsive and Near-Infrared-Emissive Nanocarriers for Anticancer Drug Delivery and Real-Time Imaging.
Theranostics,
6(7), 1053–1064.
https://doi.org/10.7150/thno.14843
-
Butler, K. S., Durfee, P. N., Theron, C., Ashley, C. E., Carnes, E. C., & Brinker, C. J. (2016). Protocells: Modular Mesoporous Silica Nanoparticle-Supported Lipid Bilayers for Drug Delivery.
Small (Weinheim an der Bergstrasse, Germany),
12(16), 2173–2185.
https://doi.org/10.1002/smll.201502119
-
Mi, Y., Mu, C., Wolfram, J., Deng, Z., Hu, T. Y., Liu, X., Blanco, E., Shen, H., & Ferrari, M. (2016). A Micro/Nano Composite for Combination Treatment of Melanoma Lung Metastasis.
Advanced healthcare materials,
5(8), 936–946.
https://doi.org/10.1002/adhm.201500910
-
Xue, X., Xu, J., Wang, P. C., & Liang, X. J. (2016). Subcellular Behaviour Evaluation of Nanopharmaceuticals with Aggregation-Induced Emission Molecules.
Journal of materials chemistry. C,
4(14), 2719–2730.
https://doi.org/10.1039/C5TC03651H
-
Li, H. J., Du, J. Z., Du, X. J., Xu, C. F., Sun, C. Y., Wang, H. X., Cao, Z. T., Yang, X. Z., Zhu, Y. H., Nie, S., & Wang, J. (2016). Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy.
Proceedings of the National Academy of Sciences of the United States of America,
113(15), 4164–4169.
https://doi.org/10.1073/pnas.1522080113
-
Kulkarni, A., Rao, P., Natarajan, S., Goldman, A., Sabbisetti, V. S., Khater, Y., Korimerla, N., Chandrasekar, V., Mashelkar, R. A., & Sengupta, S. (2016). Reporter nanoparticle that monitors its anticancer efficacy in real time.
Proceedings of the National Academy of Sciences of the United States of America,
113(15), E2104–E2113.
https://doi.org/10.1073/pnas.1603455113
-
Williford, J. M., Archang, M. M., Minn, I., Ren, Y., Wo, M., Vandermark, J., Fisher, P. B., Pomper, M. G., & Mao, H. Q. (2016). Critical Length of PEG Grafts on lPEI/DNA Nanoparticles for Efficient in Vivo Delivery.
ACS biomaterials science & engineering,
2(4), 567–578.
https://doi.org/10.1021/acsbiomaterials.5b00551
-
Pitek, A. S., Wen, A. M., Shukla, S., & Steinmetz, N. F. (2016). The Protein Corona of Plant Virus Nanoparticles Influences their Dispersion Properties, Cellular Interactions, and In Vivo Fates.
Small (Weinheim an der Bergstrasse, Germany),
12(13), 1758–1769.
https://doi.org/10.1002/smll.201502458
-
Hu, Y., Gong, X., Zhang, J., Chen, F., Fu, C., Li, P., Zou, L., & Zhao, G. (2016). Activated Charge-Reversal Polymeric Nano-System: The Promising Strategy in Drug Delivery for Cancer Therapy.
Polymers,
8(4), 99.
https://doi.org/10.3390/polym8040099
-
Myerson, J. W., Anselmo, A. C., Liu, Y., Mitragotri, S., Eckmann, D. M., & Muzykantov, V. R. (2016). Non-affinity factors modulating vascular targeting of nano- and microcarriers.
Advanced drug delivery reviews,
99(Pt A), 97–112.
https://doi.org/10.1016/j.addr.2015.10.011
-
Swierczewska, M., Han, H. S., Kim, K., Park, J. H., & Lee, S. (2016). Polysaccharide-based nanoparticles for theranostic nanomedicine.
Advanced drug delivery reviews,
99(Pt A), 70–84.
https://doi.org/10.1016/j.addr.2015.11.015
-
Talekar, M., Trivedi, M., Shah, P., Ouyang, Q., Oka, A., Gandham, S., & Amiji, M. M. (2016). Combination wt-p53 and MicroRNA-125b Transfection in a Genetically Engineered Lung Cancer Model Using Dual CD44/EGFR-targeting Nanoparticles.
Molecular therapy : the journal of the American Society of Gene Therapy,
24(4), 759–769.
https://doi.org/10.1038/mt.2015.225
-
Xu, R., Zhang, G., Mai, J., Deng, X., Segura-Ibarra, V., Wu, S., Shen, J., Liu, H., Hu, Z., Chen, L., Huang, Y., Koay, E., Huang, Y., Liu, J., Ensor, J. E., Blanco, E., Liu, X., Ferrari, M., & Shen, H. (2016). An injectable nanoparticle generator enhances delivery of cancer therapeutics.
Nature biotechnology,
34(4), 414–418.
https://doi.org/10.1038/nbt.3506
-
Revia, R. A., & Zhang, M. (2016). Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances.
Materials today (Kidlington, England),
19(3), 157–168.
https://doi.org/10.1016/j.mattod.2015.08.022
-
Liu, R., Yu, T., Shi, Z., & Wang, Z. (2016). The preparation of metal-organic frameworks and their biomedical application.
International journal of nanomedicine,
11, 1187–1200.
https://doi.org/10.2147/IJN.S100877
-
-
Shen, Z., Nieh, M. P., & Li, Y. (2016). Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges.
Polymers,
8(3), 83.
https://doi.org/10.3390/polym8030083
-
-
Mac, J. T., Nuñez, V., Burns, J. M., Guerrero, Y. A., Vullev, V. I., & Anvari, B. (2016). Erythrocyte-derived nano-probes functionalized with antibodies for targeted near infrared fluorescence imaging of cancer cells.
Biomedical optics express,
7(4), 1311–1322.
https://doi.org/10.1364/BOE.7.001311
-
Johnstone, T. C., Suntharalingam, K., & Lippard, S. J. (2016). The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs.
Chemical reviews,
116(5), 3436–3486.
https://doi.org/10.1021/acs.chemrev.5b00597
-
Friberg, S., & Nyström, A. M. (2016). NANOMEDICINE: will it offer possibilities to overcome multiple drug resistance in cancer?.
Journal of nanobiotechnology,
14, 17.
https://doi.org/10.1186/s12951-016-0172-2
-
-
Anjomshoa, M., Torkzadeh-Mahani, M., Dashtrazmi, E., & Adeli-Sardou, M. (2016). Sonochemical Synthesis and Characterization of the Copper(II) Nanocomplex: DNA- and BSA-Binding, Cell Imaging, and Cytotoxicity Against the Human Carcinoma Cell Lines.
Journal of fluorescence,
26(2), 545–558.
https://doi.org/10.1007/s10895-015-1739-2
-
Yin, P. T., Shah, S., Pasquale, N. J., Garbuzenko, O. B., Minko, T., & Lee, K. B. (2016). Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer.
Biomaterials,
81, 46–57.
https://doi.org/10.1016/j.biomaterials.2015.11.023
-
Patil-Sen, Y., Sadeghpour, A., Rappolt, M., & Kulkarni, C. V. (2016). Facile Preparation of Internally Self-assembled Lipid Particles Stabilized by Carbon Nanotubes.
Journal of visualized experiments : JoVE, (108), 53489.
https://doi.org/10.3791/53489
-
Pfirschke, C., Engblom, C., Rickelt, S., Cortez-Retamozo, V., Garris, C., Pucci, F., Yamazaki, T., Poirier-Colame, V., Newton, A., Redouane, Y., Lin, Y. J., Wojtkiewicz, G., Iwamoto, Y., Mino-Kenudson, M., Huynh, T. G., Hynes, R. O., Freeman, G. J., Kroemer, G., Zitvogel, L., Weissleder, R., … Pittet, M. J. (2016). Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy.
Immunity,
44(2), 343–354.
https://doi.org/10.1016/j.immuni.2015.11.024
-
Correa, S., Choi, K. Y., Dreaden, E. C., Renggli, K., Shi, A., Gu, L., Shopsowitz, K. E., Quadir, M. A., Ben-Akiva, E., & Hammond, P. T. (2016). Highly scalable, closed-loop synthesis of drug-loaded, layer-by-layer nanoparticles.
Advanced functional materials,
26(7), 991–1003.
https://doi.org/10.1002/adfm.201504385
-
Liang, Y., & Kiick, K. L. (2016). Liposome-Cross-Linked Hybrid Hydrogels for Glutathione-Triggered Delivery of Multiple Cargo Molecules.
Biomacromolecules,
17(2), 601–614.
https://doi.org/10.1021/acs.biomac.5b01541
-
Hou, L., Yang, X., Ren, J., Wang, Y., Zhang, H., Feng, Q., Shi, Y., Shan, X., Yuan, Y., & Zhang, Z. (2016). A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging.
International journal of nanomedicine,
11, 607–624.
https://doi.org/10.2147/IJN.S98476
-
Xing, H., Zhang, C. L., Ruan, G., Zhang, J., Hwang, K., & Lu, Y. (2016). Multimodal Detection of a Small Molecule Target Using Stimuli-Responsive Liposome Triggered by Aptamer-Enzyme Conjugate.
Analytical chemistry,
88(3), 1506–1510.
https://doi.org/10.1021/acs.analchem.5b04031
-
Liu, X., Yaszemski, M. J., & Lu, L. (2016). Expansile crosslinked polymersomes for pH sensitive delivery of doxorubicin.
Biomaterials science,
4(2), 245–249.
https://doi.org/10.1039/c5bm00269a
-
Au, J. L., Yeung, B. Z., Wientjes, M. G., Lu, Z., & Wientjes, M. G. (2016). Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities.
Advanced drug delivery reviews,
97, 280–301.
https://doi.org/10.1016/j.addr.2015.12.002
-
Chen, S., Yang, K., Tuguntaev, R. G., Mozhi, A., Zhang, J., Wang, P. C., & Liang, X. J. (2016). Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance.
Nanomedicine : nanotechnology, biology, and medicine,
12(2), 269–286.
https://doi.org/10.1016/j.nano.2015.10.020
-
Lim, E. K., & Chung, B. H. (2016). Preparation of pyrenyl-based multifunctional nanocomposites for biomedical applications.
Nature protocols,
11(2), 236–251.
https://doi.org/10.1038/nprot.2015.135
-
-
Nguyen, T. K., Selvanayagam, R., Ho, K., Chen, R., Kutty, S. K., Rice, S. A., Kumar, N., Barraud, N., Duong, H., & Boyer, C. (2016). Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles.
Chemical science,
7(2), 1016–1027.
https://doi.org/10.1039/c5sc02769a
-
Perillo, E., Porto, S., Falanga, A., Zappavigna, S., Stiuso, P., Tirino, V., Desiderio, V., Papaccio, G., Galdiero, M., Giordano, A., Galdiero, S., & Caraglia, M. (2016). Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines.
Oncotarget,
7(4), 4077–4092.
https://doi.org/10.18632/oncotarget.6013
-
Hudlikar, M. S., Li, X., Gagarinov, I. A., Kolishetti, N., Wolfert, M. A., & Boons, G. J. (2016). Controlled Multi-functionalization Facilitates Targeted Delivery of Nanoparticles to Cancer Cells.
Chemistry (Weinheim an der Bergstrasse, Germany),
22(4), 1415–1423.
https://doi.org/10.1002/chem.201503999
-
Gujrati, V., Lee, M., Ko, Y. J., Lee, S., Kim, D., Kim, H., Kang, S., Lee, S., Kim, J., Jeon, H., Kim, S. C., Jun, Y., & Jon, S. (2016). Bioengineered yeast-derived vacuoles with enhanced tissue-penetrating ability for targeted cancer therapy.
Proceedings of the National Academy of Sciences of the United States of America,
113(3), 710–715.
https://doi.org/10.1073/pnas.1509371113
-
Zhang, X., Li, Y., Chen, Y. E., Chen, J., & Ma, P. X. (2016). Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects.
Nature communications,
7, 10376.
https://doi.org/10.1038/ncomms10376
-
Wang, C. E., Wei, H., Tan, N., Boydston, A. J., & Pun, S. H. (2016). Sunflower Polymers for Folate-Mediated Drug Delivery.
Biomacromolecules,
17(1), 69–75.
https://doi.org/10.1021/acs.biomac.5b01176
-
Jones, S. K., Lizzio, V., & Merkel, O. M. (2016). Folate Receptor Targeted Delivery of siRNA and Paclitaxel to Ovarian Cancer Cells via Folate Conjugated Triblock Copolymer to Overcome TLR4 Driven Chemotherapy Resistance.
Biomacromolecules,
17(1), 76–87.
https://doi.org/10.1021/acs.biomac.5b01189
-
Ho, Y. J., Chang, Y. C., & Yeh, C. K. (2016). Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization.
Theranostics,
6(3), 392–403.
https://doi.org/10.7150/thno.13727
-
Jenkins, S. V., Srivatsan, A., Reynolds, K. Y., Gao, F., Zhang, Y., Heyes, C. D., Pandey, R. K., & Chen, J. (2016). Understanding the interactions between porphyrin-containing photosensitizers and polymer-coated nanoparticles in model biological environments.
Journal of colloid and interface science,
461, 225–231.
https://doi.org/10.1016/j.jcis.2015.09.037
-
Gu, L., & Mooney, D. J. (2016). Biomaterials and emerging anticancer therapeutics: engineering the microenvironment.
Nature reviews. Cancer,
16(1), 56–66.
https://doi.org/10.1038/nrc.2015.3
-
-
Agrahari, V., Agrahari, V., & Mitra, A. K. (2016). Nanocarrier fabrication and macromolecule drug delivery: challenges and opportunities.
Therapeutic delivery,
7(4), 257–278.
https://doi.org/10.4155/tde-2015-0012
-
-
Udofot, O., Affram, K., Smith, T., Tshabe, B., Krishnan, S., Sachdeva, M., & Agyare, E. (2016). Pharmacokinetic, biodistribution and therapeutic efficacy of 5-fluorouracil-loaded pH-sensitive PEGylated liposomal nanoparticles in HCT-116 tumor bearing mouse. Journal of nature and science, 2(1), e171.
-
Luk, B. T., & Zhang, L. (2015). Cell membrane-camouflaged nanoparticles for drug delivery.
Journal of controlled release : official journal of the Controlled Release Society,
220(Pt B), 600–607.
https://doi.org/10.1016/j.jconrel.2015.07.019
-
Nie, S., Zhang, J., Martinez-Zaguilan, R., Sennoune, S., Hossen, M. N., Lichtenstein, A. H., Cao, J., Meyerrose, G. E., Paone, R., Soontrapa, S., Fan, Z., & Wang, S. (2015). Detection of atherosclerotic lesions and intimal macrophages using CD36-targeted nanovesicles.
Journal of controlled release : official journal of the Controlled Release Society,
220(Pt A), 61–70.
https://doi.org/10.1016/j.jconrel.2015.10.004
-
Robinson, R., Gerlach, W., & Ghandehari, H. (2015). Comparative effect of gold nanorods and nanocages for prostate tumor hyperthermia.
Journal of controlled release : official journal of the Controlled Release Society,
220(Pt A), 245–252.
https://doi.org/10.1016/j.jconrel.2015.10.036
-
Luo, D., Carter, K. A., Razi, A., Geng, J., Shao, S., Lin, C., Ortega, J., & Lovell, J. F. (2015). Porphyrin-phospholipid liposomes with tunable leakiness.
Journal of controlled release : official journal of the Controlled Release Society,
220(Pt A), 484–494.
https://doi.org/10.1016/j.jconrel.2015.11.011
-
-
Kim, S. S., Harford, J. B., Pirollo, K. F., & Chang, E. H. (2015). Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine.
Biochemical and biophysical research communications,
468(3), 485–489.
https://doi.org/10.1016/j.bbrc.2015.06.137
-
Grayson P. (2015). Izumo1 and Juno: the evolutionary origins and coevolution of essential sperm-egg binding partners.
Royal Society open science,
2(12), 150296.
https://doi.org/10.1098/rsos.150296
-
Zhou, M., Zhao, J., Tian, M., Song, S., Zhang, R., Gupta, S., Tan, D., Shen, H., Ferrari, M., & Li, C. (2015). Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model.
Nanoscale,
7(46), 19438–19447.
https://doi.org/10.1039/c5nr04587h
-
Curtis, L. T., Wu, M., Lowengrub, J., Decuzzi, P., & Frieboes, H. B. (2015). Computational Modeling of Tumor Response to Drug Release from Vasculature-Bound Nanoparticles.
PloS one,
10(12), e0144888.
https://doi.org/10.1371/journal.pone.0144888
-
Du, J., Lane, L. A., & Nie, S. (2015). Stimuli-responsive nanoparticles for targeting the tumor microenvironment.
Journal of controlled release : official journal of the Controlled Release Society,
219, 205–214.
https://doi.org/10.1016/j.jconrel.2015.08.050
-
Liu, D., & Auguste, D. T. (2015). Cancer targeted therapeutics: From molecules to drug delivery vehicles.
Journal of controlled release : official journal of the Controlled Release Society,
219, 632–643.
https://doi.org/10.1016/j.jconrel.2015.08.041
-
-
Alexander, J. F., Kozlovskaya, V., Chen, J., Kuncewicz, T., Kharlampieva, E., & Godin, B. (2015). Cubical Shape Enhances the Interaction of Layer-by-Layer Polymeric Particles with Breast Cancer Cells.
Advanced healthcare materials,
4(17), 2657–2666.
https://doi.org/10.1002/adhm.201500537
-
Arami, H., Khandhar, A., Liggitt, D., & Krishnan, K. M. (2015). In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles.
Chemical Society reviews,
44(23), 8576–8607.
https://doi.org/10.1039/c5cs00541h
-
Awuah, S. G., Zheng, Y. R., Bruno, P. M., Hemann, M. T., & Lippard, S. J. (2015). A Pt(IV) Pro-drug Preferentially Targets Indoleamine-2,3-dioxygenase, Providing Enhanced Ovarian Cancer Immuno-Chemotherapy.
Journal of the American Chemical Society,
137(47), 14854–14857.
https://doi.org/10.1021/jacs.5b10182
-
Lu, Y., Hu, Q., Lin, Y., Pacardo, D. B., Wang, C., Sun, W., Ligler, F. S., Dickey, M. D., & Gu, Z. (2015). Transformable liquid-metal nanomedicine.
Nature communications,
6, 10066.
https://doi.org/10.1038/ncomms10066
-
Wang, Z., Dabrosin, C., Yin, X., Fuster, M. M., Arreola, A., Rathmell, W. K., Generali, D., Nagaraju, G. P., El-Rayes, B., Ribatti, D., Chen, Y. C., Honoki, K., Fujii, H., Georgakilas, A. G., Nowsheen, S., Amedei, A., Niccolai, E., Amin, A., Ashraf, S. S., Helferich, B., … Jensen, L. D. (2015). Broad targeting of angiogenesis for cancer prevention and therapy.
Seminars in cancer biology,
35 Suppl(Suppl), S224–S243.
https://doi.org/10.1016/j.semcancer.2015.01.001
-
Wang, H., Agarwal, P., Zhao, S., Xu, R. X., Yu, J., Lu, X., & He, X. (2015). Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells.
Biomaterials,
72, 74–89.
https://doi.org/10.1016/j.biomaterials.2015.08.048
-
Dai, T., Li, N., Liu, L., Liu, Q., & Zhang, Y. (2015). AMP-Conjugated Quantum Dots: Low Immunotoxicity Both In Vitro and In Vivo.
Nanoscale research letters,
10(1), 434.
https://doi.org/10.1186/s11671-015-1100-3
-
Wang, H., Agarwal, P., Zhao, S., Yu, J., Lu, X., & He, X. (2015). A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of theranostic agents. [Corrected].
Nature communications,
6, 10081.
https://doi.org/10.1038/ncomms10081
-
Miyamoto, T., Kuribayashi, M., Nagao, S., Shomura, Y., Higuchi, Y., & Hirota, S. (2015). Domain-swapped cytochrome
cb562 dimer and its nanocage encapsulating a Zn-SO4 cluster in the internal cavity.
Chemical science,
6(12), 7336–7342.
https://doi.org/10.1039/c5sc02428e
-
Hu, Q., Sun, W., Qian, C., Wang, C., Bomba, H. N., & Gu, Z. (2015). Anticancer Platelet-Mimicking Nanovehicles.
Advanced materials (Deerfield Beach, Fla.),
27(44), 7043–7050.
https://doi.org/10.1002/adma.201503323
-
Lukianova-Hleb, E. Y., Kim, Y. S., Aryasomayajula, B., Boulikas, T., Phan, J., Hung, M. C., Torchilin, V. P., O'Neill, B. E., & Lapotko, D. O. (2015). Safety and efficacy of quadrapeutics versus chemoradiation in head and neck carcinoma xenograft model. American journal of cancer research, 5(12), 3534–3547.
-
Liu, S. S., Liu, L. J., Xiao, L. Y., Lu, Q., Zhu, H. S., & Kaplan, D. L. (2015). Design of Silk-Vaterite Microsphere Systems as Drug Carriers with pH-responsive Release Behavior.
Journal of materials chemistry. B,
3(42), 8314–8320.
https://doi.org/10.1039/C5TB01692D
-
Yokoi, K., Chan, D., Kojic, M., Milosevic, M., Engler, D., Matsunami, R., Tanei, T., Saito, Y., Ferrari, M., & Ziemys, A. (2015). Liposomal doxorubicin extravasation controlled by phenotype-specific transport properties of tumor microenvironment and vascular barrier.
Journal of controlled release : official journal of the Controlled Release Society,
217, 293–299.
https://doi.org/10.1016/j.jconrel.2015.09.044
-
Prasad, P., Molla, M. R., Cui, W., Canakci, M., Osborne, B., Mager, J., & Thayumanavan, S. (2015). Polyamide Nanogels from Generally Recognized as Safe Components and Their Toxicity in Mouse Preimplantation Embryos.
Biomacromolecules,
16(11), 3491–3498.
https://doi.org/10.1021/acs.biomac.5b00900
-
Fang, R. H., Kroll, A. V., & Zhang, L. (2015). Nanoparticle-Based Manipulation of Antigen-Presenting Cells for Cancer Immunotherapy.
Small (Weinheim an der Bergstrasse, Germany),
11(41), 5483–5496.
https://doi.org/10.1002/smll.201501284
-
Nguyen, C. T., Tran, T. H., Amiji, M., Lu, X., & Kasi, R. M. (2015). Redox-sensitive nanoparticles from amphiphilic cholesterol-based block copolymers for enhanced tumor intracellular release of doxorubicin.
Nanomedicine : nanotechnology, biology, and medicine,
11(8), 2071–2082.
https://doi.org/10.1016/j.nano.2015.06.011
-
Stylianopoulos, T., & Jain, R. K. (2015). Design considerations for nanotherapeutics in oncology.
Nanomedicine : nanotechnology, biology, and medicine,
11(8), 1893–1907.
https://doi.org/10.1016/j.nano.2015.07.015
-
Tyagi, N., Tyagi, M., Pachauri, M., & Ghosh, P. C. (2015). Potential therapeutic applications of plant toxin-ricin in cancer: challenges and advances.
Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine,
36(11), 8239–8246.
https://doi.org/10.1007/s13277-015-4028-4
-
Glasgow, M. D., & Chougule, M. B. (2015). Recent Developments in Active Tumor Targeted Multifunctional Nanoparticles for Combination Chemotherapy in Cancer Treatment and Imaging.
Journal of biomedical nanotechnology,
11(11), 1859–1898.
https://doi.org/10.1166/jbn.2015.2145
-
Thu, H. P., Nam, N. H., Quang, B. T., Son, H. A., Toan, N. L., & Quang, D. T. (2015). In vitro and in vivo targeting effect of folate decorated paclitaxel loaded PLA-TPGS nanoparticles.
Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society,
23(6), 683–688.
https://doi.org/10.1016/j.jsps.2015.02.002
-
-
Liu, X., Miller, A. L., 2nd, Waletzki, B. E., Mamo, T. K., Yaszemski, M. J., & Lu, L. (2015). Hydrolysable core crosslinked particle for receptor-mediated pH-sensitive anticancer drug delivery.
New journal of chemistry = Nouveau journal de chimie,
39(11), 8840–8847.
https://doi.org/10.1039/C5NJ01404B
-
Mei, L., Zhu, G., Qiu, L., Wu, C., Chen, H., Liang, H., Cansiz, S., Lv, Y., Zhang, X., & Tan, W. (2015). Self-assembled Multifunctional DNA Nanoflowers for the Circumvention of Multidrug Resistance in Targeted Anticancer Drug Delivery.
Nano research,
8(11), 3447–3460.
https://doi.org/10.1007/s12274-015-0841-8
-
Betzer, O., Meir, R., Dreifuss, T., Shamalov, K., Motiei, M., Shwartz, A., Baranes, K., Cohen, C. J., Shraga-Heled, N., Ofir, R., Yadid, G., & Popovtzer, R. (2015). In-vitro Optimization of Nanoparticle-Cell Labeling Protocols for In-vivo Cell Tracking Applications.
Scientific reports,
5, 15400.
https://doi.org/10.1038/srep15400
-
Qiu, J., Zhang, R., Li, J., Sang, Y., Tang, W., Rivera Gil, P., & Liu, H. (2015). Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems.
International journal of nanomedicine,
10, 6709–6724.
https://doi.org/10.2147/IJN.S91864
-
Agarwal, R., Jurney, P., Raythatha, M., Singh, V., Sreenivasan, S. V., Shi, L., & Roy, K. (2015). Effect of shape, size, and aspect ratio on nanoparticle penetration and distribution inside solid tissues using 3D spheroid models.
Advanced healthcare materials,
4(15), 2269–2280.
https://doi.org/10.1002/adhm.201500441
-
Shu, D., Li, H., Shu, Y., Xiong, G., Carson, W. E., 3rd, Haque, F., Xu, R., & Guo, P. (2015). Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology.
ACS nano,
9(10), 9731–9740.
https://doi.org/10.1021/acsnano.5b02471
-
Song, Y., Kang, Y. J., Jung, H., Kim, H., Kang, S., & Cho, H. (2015). Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a T1 contrast agent for high-field MRI.
Scientific reports,
5, 15656.
https://doi.org/10.1038/srep15656
-
Liu, X., Wang, J., Xu, W., Ding, J., Shi, B., Huang, K., Zhuang, X., & Chen, X. (2015). Glutathione-degradable drug-loaded nanogel effectively and securely suppresses hepatoma in mouse model.
International journal of nanomedicine,
10, 6587–6602.
https://doi.org/10.2147/IJN.S90000
-
Zheng, Y., Tang, Y., Bao, Z., Wang, H., Ren, F., Guo, M., Quan, H., & Jiang, C. (2015). FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells.
International journal of nanomedicine,
10, 6435–6444.
https://doi.org/10.2147/IJN.S88458
-
Mustafa, R., Luo, Y., Wu, Y., Guo, R., & Shi, X. (2015). Dendrimer-Functionalized Laponite Nanodisks as a Platform for Anticancer Drug Delivery.
Nanomaterials (Basel, Switzerland),
5(4), 1716–1731.
https://doi.org/10.3390/nano5041716
-
Zhang, F., Cao, J., Chen, X., Yang, K., Zhu, L., Fu, G., Huang, X., & Chen, X. (2015). Noninvasive Dynamic Imaging of Tumor Early Response to Nanoparticle-mediated Photothermal Therapy.
Theranostics,
5(12), 1444–1455.
https://doi.org/10.7150/thno.13398
-
Kunjachan, S., Ehling, J., Storm, G., Kiessling, F., & Lammers, T. (2015). Noninvasive Imaging of Nanomedicines and Nanotheranostics: Principles, Progress, and Prospects.
Chemical reviews,
115(19), 10907–10937.
https://doi.org/10.1021/cr500314d
-
Chinen, A. B., Guan, C. M., Ferrer, J. R., Barnaby, S. N., Merkel, T. J., & Mirkin, C. A. (2015). Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence.
Chemical reviews,
115(19), 10530–10574.
https://doi.org/10.1021/acs.chemrev.5b00321
-
Zhu, C. D., Zheng, Q., Wang, L. X., Xu, H. F., Tong, J. L., Zhang, Q. A., Wan, Y., & Wu, J. Q. (2015). Synthesis of novel galactose functionalized gold nanoparticles and its radiosensitizing mechanism.
Journal of nanobiotechnology,
13, 67.
https://doi.org/10.1186/s12951-015-0129-x
-
Sun, W., Ji, W., Hall, J. M., Hu, Q., Wang, C., Beisel, C. L., & Gu, Z. (2015). Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing.
Angewandte Chemie (International ed. in English),
54(41), 12029–12033.
https://doi.org/10.1002/anie.201506030
-
Wang, C., Wang, Y., Li, Y., Bodemann, B., Zhao, T., Ma, X., Huang, G., Hu, Z., DeBerardinis, R. J., White, M. A., & Gao, J. (2015). A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles.
Nature communications,
6, 8524.
https://doi.org/10.1038/ncomms9524
-
Nouri, F. S., Banerjee, D., & Hatefi, A. (2015). Practical Issues with the Use of Stem Cells for Cancer Gene Therapy.
Stem cell reviews and reports,
11(5), 688–698.
https://doi.org/10.1007/s12015-015-9605-9
-
Zhang, Z., & Ma, P. X. (2015). From Nanofibrous Hollow Microspheres to Nanofibrous Hollow Discs and Nanofibrous Shells.
Macromolecular rapid communications,
36(19), 1735–1741.
https://doi.org/10.1002/marc.201500342
-
-
Stocke, N. A., Arnold, S. M., & Hilt, J. Z. (2015). Responsive Hydrogel Nanoparticles for Pulmonary Delivery.
Journal of drug delivery science and technology,
29, 143–151.
https://doi.org/10.1016/j.jddst.2015.06.013
-
Lv, Y., Hu, R., Zhu, G., Zhang, X., Mei, L., Liu, Q., Qiu, L., Wu, C., & Tan, W. (2015). Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers.
Nature protocols,
10(10), 1508–1524.
https://doi.org/10.1038/nprot.2015.078
-
Affram, K., Udofot, O., Cat, A., & Agyare, E. (2015). In vitro and in vivo antitumor activity of gemcitabine loaded thermosensitive liposomal nanoparticles and mild hyperthermia in pancreatic cancer. International journal of advanced research, 3(10), 859–874.
-
-
-
Martins, P., Jesus, J., Santos, S., Raposo, L. R., Roma-Rodrigues, C., Baptista, P. V., & Fernandes, A. R. (2015). Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine's Tool Box.
Molecules (Basel, Switzerland),
20(9), 16852–16891.
https://doi.org/10.3390/molecules200916852
-
Tang, J., Li, L., Howard, C. B., Mahler, S. M., Huang, L., & Xu, Z. P. (2015). Preparation of optimized lipid-coated calcium phosphate nanoparticles for enhanced in vitro gene delivery to breast cancer cells.
Journal of materials chemistry. B,
3(33), 6805–6812.
https://doi.org/10.1039/C5TB00912J
-
Saifullah, B., & Hussein, M. Z. (2015). Inorganic nanolayers: structure, preparation, and biomedical applications.
International journal of nanomedicine,
10, 5609–5633.
https://doi.org/10.2147/IJN.S72330
-
-
Gahlaut, N., Suarez, S., Uddin, M. I., Gordon, A. Y., Evans, S. M., & Jayagopal, A. (2015). Nanoengineering of therapeutics for retinal vascular disease.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V,
95(Pt B), 323–330.
https://doi.org/10.1016/j.ejpb.2015.05.001
-
-
Gobbo, O. L., Sjaastad, K., Radomski, M. W., Volkov, Y., & Prina-Mello, A. (2015). Magnetic Nanoparticles in Cancer Theranostics.
Theranostics,
5(11), 1249–1263.
https://doi.org/10.7150/thno.11544
-
Zhang, J., Li, S., An, F. F., Liu, J., Jin, S., Zhang, J. C., Wang, P. C., Zhang, X., Lee, C. S., & Liang, X. J. (2015). Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release.
Nanoscale,
7(32), 13503–13510.
https://doi.org/10.1039/c5nr03259h
-
Lee, H., Sung, D., Kim, J., Kim, B. T., Wang, T., An, S. S., Seo, S. W., & Yi, D. K. (2015). Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution.
International journal of nanomedicine,
10 Spec Iss(Spec Iss), 215–225.
https://doi.org/10.2147/IJN.S88311
-
Song, L., Guo, Y., Roebuck, D., Chen, C., Yang, M., Yang, Z., Sreedharan, S., Glover, C., Thomas, J. A., Liu, D., Guo, S., Chen, R., & Zhou, D. (2015). Terminal PEGylated DNA-Gold Nanoparticle Conjugates Offering High Resistance to Nuclease Degradation and Efficient Intracellular Delivery of DNA Binding Agents.
ACS applied materials & interfaces,
7(33), 18707–18716.
https://doi.org/10.1021/acsami.5b05228
-
Tran, T. H., Ramasamy, T., Choi, J. Y., Nguyen, H. T., Pham, T. T., Jeong, J. H., Ku, S. K., Choi, H. G., Yong, C. S., & Kim, J. O. (2015). Tumor-targeting, pH-sensitive nanoparticles for docetaxel delivery to drug-resistant cancer cells.
International journal of nanomedicine,
10, 5249–5262.
https://doi.org/10.2147/IJN.S89584
-
Qu, M., Mehrmohammadi, M., & Emelianov, S. Y. (2015). Sensing the delivery and endocytosis of nanoparticles using magneto-photo-acoustic imaging.
Photoacoustics,
3(3), 107–113.
https://doi.org/10.1016/j.pacs.2015.08.004
-
Misra, A. C., Luker, K. E., Durmaz, H., Luker, G. D., & Lahann, J. (2015). CXCR4-Targeted Nanocarriers for Triple Negative Breast Cancers.
Biomacromolecules,
16(8), 2412–2417.
https://doi.org/10.1021/acs.biomac.5b00653
-
Hrynyk, M., Ellis, J. P., Haxho, F., Allison, S., Steele, J. A., Abdulkhalek, S., Neufeld, R. J., & Szewczuk, M. R. (2015). Therapeutic designed poly (lactic-co-glycolic acid) cylindrical oseltamivir phosphate-loaded implants impede tumor neovascularization, growth and metastasis in mouse model of human pancreatic carcinoma.
Drug design, development and therapy,
9, 4573–4586.
https://doi.org/10.2147/DDDT.S90170
-
Meng, W. C., Pan, Y., & Zhao, X. (2015). Epirubicin-gold nanoparticles suppress hepatocellular carcinoma xenograft growth in nude mice.
Journal of biomedical research,
29(6), 486–490. Advance online publication.
https://doi.org/10.7555/JBR.29.20140044
-
Anand, P., O'Neil, A., Lin, E., Douglas, T., & Holford, M. (2015). Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers.
Scientific reports,
5, 12497.
https://doi.org/10.1038/srep12497
-
Ganta, S., Singh, A., Kulkarni, P., Keeler, A. W., Piroyan, A., Sawant, R. R., Patel, N. R., Davis, B., Ferris, C., O'Neal, S., Zamboni, W., Amiji, M. M., & Coleman, T. P. (2015). EGFR Targeted Theranostic Nanoemulsion for Image-Guided Ovarian Cancer Therapy.
Pharmaceutical research,
32(8), 2753–2763.
https://doi.org/10.1007/s11095-015-1660-z
-
Li, H., Rychahou, P. G., Cui, Z., Pi, F., Evers, B. M., Shu, D., Guo, P., & Luo, W. (2015). RNA Nanoparticles Derived from Three-Way Junction of Phi29 Motor pRNA Are Resistant to I-125 and Cs-131 Radiation.
Nucleic acid therapeutics,
25(4), 188–197.
https://doi.org/10.1089/nat.2014.0525
-
-
-
Zhang, P., Cheetham, A. G., Lock, L. L., Li, Y., & Cui, H. (2015). Activatable nanoprobes for biomolecular detection.
Current opinion in biotechnology,
34, 171–179.
https://doi.org/10.1016/j.copbio.2015.01.009
-
Korang-Yeboah, M., Gorantla, Y., Paulos, S. A., Sharma, P., Chaudhary, J., & Palaniappan, R. (2015). Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.
International journal of nanomedicine,
10, 4763–4781.
https://doi.org/10.2147/IJN.S75101
-
Mitragotri, S., Anderson, D. G., Chen, X., Chow, E. K., Ho, D., Kabanov, A. V., Karp, J. M., Kataoka, K., Mirkin, C. A., Petrosko, S. H., Shi, J., Stevens, M. M., Sun, S., Teoh, S., Venkatraman, S. S., Xia, Y., Wang, S., Gu, Z., & Xu, C. (2015). Accelerating the Translation of Nanomaterials in Biomedicine.
ACS nano,
9(7), 6644–6654.
https://doi.org/10.1021/acsnano.5b03569
-
Pacardo, D. B., Neupane, B., Rikard, S. M., Lu, Y., Mo, R., Mishra, S. R., Tracy, J. B., Wang, G., Ligler, F. S., & Gu, Z. (2015). A dual wavelength-activatable gold nanorod complex for synergistic cancer treatment.
Nanoscale,
7(28), 12096–12103.
https://doi.org/10.1039/c5nr01568e
-
Bao, C., Conde, J., Curtin, J., Artzi, N., Tian, F., & Cui, D. (2015). Bioresponsive antisense DNA gold nanobeacons as a hybrid in vivo theranostics platform for the inhibition of cancer cells and metastasis.
Scientific reports,
5, 12297.
https://doi.org/10.1038/srep12297
-
Nievergelt, A. P., Erickson, B. W., Hosseini, N., Adams, J. D., & Fantner, G. E. (2015). Studying biological membranes with extended range high-speed atomic force microscopy.
Scientific reports,
5, 11987.
https://doi.org/10.1038/srep11987
-
Choi, S. Y., Song, M. S., Ryu, P. D., Lam, A. T., Joo, S. W., & Lee, S. Y. (2015). Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway.
International journal of nanomedicine,
10, 4383–4392.
https://doi.org/10.2147/IJN.S78775
-
Ruenraroengsak, P., & Tetley, T. D. (2015). Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells.
Particle and fibre toxicology,
12, 19.
https://doi.org/10.1186/s12989-015-0091-7
-
Williford, J. M., Santos, J. L., Shyam, R., & Mao, H. Q. (2015). Shape Control in Engineering of Polymeric Nanoparticles for Therapeutic Delivery.
Biomaterials science,
3(7), 894–907.
https://doi.org/10.1039/C5BM00006H
-
Cai, K., Yen, J., Yin, Q., Liu, Y., Song, Z., Lezmi, S., Zhang, Y., Yang, X., Helferich, W. G., & Cheng, J. (2015). Redox-Responsive Self-Assembled Chain-Shattering Polymeric Therapeutics.
Biomaterials science,
3(7), 1061–1065.
https://doi.org/10.1039/C4BM00452C
-
Wang, D., Tu, C., Su, Y., Zhang, C., Greiser, U., Zhu, X., Yan, D., & Wang, W. (2015). Supramolecularly engineered phospholipids constructed by nucleobase molecular recognition: upgraded generation of phospholipids for drug delivery.
Chemical science,
6(7), 3775–3787.
https://doi.org/10.1039/c5sc01188d
-
Tsai, J. L., Zou, T., Liu, J., Chen, T., Chan, A. O., Yang, C., Lok, C. N., & Che, C. M. (2015). Luminescent platinum(ii) complexes with self-assembly and anti-cancer properties: hydrogel, pH dependent emission color and sustained-release properties under physiological conditions.
Chemical science,
6(7), 3823–3830.
https://doi.org/10.1039/c4sc03635b
-
Mastria, E. M., Chen, M., McDaniel, J. R., Li, X., Hyun, J., Dewhirst, M. W., & Chilkoti, A. (2015). Doxorubicin-conjugated polypeptide nanoparticles inhibit metastasis in two murine models of carcinoma.
Journal of controlled release : official journal of the Controlled Release Society,
208, 52–58.
https://doi.org/10.1016/j.jconrel.2015.01.033
-
Premnath, P., Venkatakrishnan, K., & Tan, B. (2015). Programming cancer through phase-functionalized silicon based biomaterials.
Scientific reports,
5, 10826.
https://doi.org/10.1038/srep10826
-
Mohammadpour, M., Jabbarvand, M., Hashemi, H., & Delrish, E. (2015). Prophylactic effect of topical silica nanoparticles as a novel antineovascularization agent for inhibiting corneal neovascularization following chemical burn.
Advanced biomedical research,
4, 124.
https://doi.org/10.4103/2277-9175.158039
-
Krishnan, V., Xu, X., Kelly, D., Snook, A., Waldman, S. A., Mason, R. W., Jia, X., & Rajasekaran, A. K. (2015). CD19-Targeted Nanodelivery of Doxorubicin Enhances Therapeutic Efficacy in B-Cell Acute Lymphoblastic Leukemia.
Molecular pharmaceutics,
12(6), 2101–2111.
https://doi.org/10.1021/acs.molpharmaceut.5b00071
-
Nair, M. S., Lee, M. M., Bonnegarde-Bernard, A., Wallace, J. A., Dean, D. H., Ostrowski, M. C., Burry, R. W., Boyaka, P. N., & Chan, M. K. (2015). Cry protein crystals: a novel platform for protein delivery.
PloS one,
10(6), e0127669.
https://doi.org/10.1371/journal.pone.0127669
-
Danad, I., Fayad, Z. A., Willemink, M. J., & Min, J. K. (2015). New Applications of Cardiac Computed Tomography: Dual-Energy, Spectral, and Molecular CT Imaging.
JACC. Cardiovascular imaging,
8(6), 710–723.
https://doi.org/10.1016/j.jcmg.2015.03.005
-
-
Kim, C. S., Mout, R., Zhao, Y., Yeh, Y. C., Tang, R., Jeong, Y., Duncan, B., Hardy, J. A., & Rotello, V. M. (2015). Co-delivery of protein and small molecule therapeutics using nanoparticle-stabilized nanocapsules.
Bioconjugate chemistry,
26(5), 950–954.
https://doi.org/10.1021/acs.bioconjchem.5b00146
-
Qiu, L., Hong, C. Y., & Pan, C. Y. (2015). Doxorubicin-loaded aromatic imine-contained amphiphilic branched star polymer micelles: synthesis, self-assembly, and drug delivery.
International journal of nanomedicine,
10, 3623–3640.
https://doi.org/10.2147/IJN.S78355
-
Bakhshinejad B. (2015). Phage display and targeting peptides: surface functionalization of nanocarriers for delivery of small non-coding RNAs.
Frontiers in genetics,
6, 178.
https://doi.org/10.3389/fgene.2015.00178
-
Zhang, H., Ma, Y., Xie, Y., An, Y., Huang, Y., Zhu, Z., & Yang, C. J. (2015). A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery.
Scientific reports,
5, 10099.
https://doi.org/10.1038/srep10099
-
Migliaccio, N., Palmieri, C., Ruggiero, I., Fiume, G., Martucci, N. M., Scala, I., Quinto, I., Scala, G., Lamberti, A., & Arcari, P. (2015). B-cell receptor-guided delivery of peptide-siRNA complex for B-cell lymphoma therapy.
Cancer cell international,
15, 50.
https://doi.org/10.1186/s12935-015-0202-4
-
-
-
-
Liu, M., Huang, G., Cong, Y., Tong, G., Lin, Z., Yin, Y., & Zhang, C. (2015). The preparation and characterization of micelles from poly(γ-glutamic acid)-graft-poly(L-lactide) and the cellular uptake thereof.
Journal of materials science. Materials in medicine,
26(5), 187.
https://doi.org/10.1007/s10856-015-5519-y
-
Yu, H. Y., Eckmann, D. M., Ayyaswamy, P. S., & Radhakrishnan, R. (2015). Composite generalized Langevin equation for Brownian motion in different hydrodynamic and adhesion regimes.
Physical review. E, Statistical, nonlinear, and soft matter physics,
91(5), 052303.
https://doi.org/10.1103/PhysRevE.91.052303
-
Wójcik, M., Lewandowski, W., Król, M., Pawłowski, K., Mieczkowski, J., Lechowski, R., & Zabielska, K. (2015). Enhancing anti-tumor efficacy of Doxorubicin by non-covalent conjugation to gold nanoparticles - in vitro studies on feline fibrosarcoma cell lines.
PloS one,
10(4), e0124955.
https://doi.org/10.1371/journal.pone.0124955
-
Chaurasia, S. S., Lim, R. R., Lakshminarayanan, R., & Mohan, R. R. (2015). Nanomedicine approaches for corneal diseases.
Journal of functional biomaterials,
6(2), 277–298.
https://doi.org/10.3390/jfb6020277
-
Sayour, E. J., Sanchez-Perez, L., Flores, C., & Mitchell, D. A. (2015). Bridging infectious disease vaccines with cancer immunotherapy: a role for targeted RNA based immunotherapeutics.
Journal for immunotherapy of cancer,
3, 13.
https://doi.org/10.1186/s40425-015-0058-0
-
Maswadeh, H. M., Aljarbou, A. N., Alorainy, M. S., Rahmani, A. H., & Khan, M. A. (2015). Coadministration of doxorubicin and etoposide loaded in camel milk phospholipids liposomes showed increased antitumor activity in a murine model.
International journal of nanomedicine,
10, 2847–2855.
https://doi.org/10.2147/IJN.S80820
-
Williams, R. M., Shah, J., Ng, B. D., Minton, D. R., Gudas, L. J., Park, C. Y., & Heller, D. A. (2015). Mesoscale nanoparticles selectively target the renal proximal tubule epithelium.
Nano letters,
15(4), 2358–2364.
https://doi.org/10.1021/nl504610d
-
Huang, W., Wang, X., Shi, C., Guo, D., Xu, G., Wang, L., Bodman, A., & Luo, J. (2015). Fine-tuning vitamin E-containing telodendrimers for efficient delivery of gambogic acid in colon cancer treatment.
Molecular pharmaceutics,
12(4), 1216–1229.
https://doi.org/10.1021/acs.molpharmaceut.5b00051
-
Tang, L., Yin, Q., Xu, Y., Zhou, Q., Cai, K., Yen, J., Dobrucki, L. W., & Cheng, J. (2015). Bioorthogonal Oxime Ligation Mediated
In Vivo Cancer Targeting.
Chemical science,
6(4), 2182–2186.
https://doi.org/10.1039/C5SC00063G
-
Zhang, W., Wang, G., Falconer, J. R., Baguley, B. C., Shaw, J. P., Liu, J., Xu, H., See, E., Sun, J., Aa, J., & Wu, Z. (2015). Strategies to maximize liposomal drug loading for a poorly water-soluble anticancer drug.
Pharmaceutical research,
32(4), 1451–1461.
https://doi.org/10.1007/s11095-014-1551-8
-
Xu, X., Ho, W., Zhang, X., Bertrand, N., & Farokhzad, O. (2015). Cancer nanomedicine: from targeted delivery to combination therapy.
Trends in molecular medicine,
21(4), 223–232.
https://doi.org/10.1016/j.molmed.2015.01.001
-
Ucisik, M. H., Küpcü, S., Breitwieser, A., Gelbmann, N., Schuster, B., & Sleytr, U. B. (2015). S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting.
Colloids and surfaces. B, Biointerfaces,
128, 132–139.
https://doi.org/10.1016/j.colsurfb.2015.01.055
-
Meyers, J. D., Cheng, Y., Broome, A. M., Agnes, R. S., Schluchter, M. D., Margevicius, S., Wang, X., Kenney, M. E., Burda, C., & Basilion, J. P. (2015). Peptide-Targeted Gold Nanoparticles for Photodynamic Therapy of Brain Cancer.
Particle & particle systems characterization : measurement and description of particle properties and behavior in powders and other disperse systems,
32(4), 448–457.
https://doi.org/10.1002/ppsc.201400119
-
-
Zhang, Y., Lundberg, P., Diether, M., Porsch, C., Janson, C., Lynd, N. A., Ducani, C., Malkoch, M., Malmström, E., Hawker, C. J., & Nyström, A. M. (2015). Histamine-functionalized copolymer micelles as a drug delivery system in 2D and 3D models of breast cancer.
Journal of materials chemistry. B,
3(12), 2472–2486.
https://doi.org/10.1039/C4TB02051K
-
Poon, C., He, C., Liu, D., Lu, K., & Lin, W. (2015). Self-assembled nanoscale coordination polymers carrying oxaliplatin and gemcitabine for synergistic combination therapy of pancreatic cancer.
Journal of controlled release : official journal of the Controlled Release Society,
201, 90–99.
https://doi.org/10.1016/j.jconrel.2015.01.026
-
Wei, T., Chen, C., Liu, J., Liu, C., Posocco, P., Liu, X., Cheng, Q., Huo, S., Liang, Z., Fermeglia, M., Pricl, S., Liang, X. J., Rocchi, P., & Peng, L. (2015). Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance.
Proceedings of the National Academy of Sciences of the United States of America,
112(10), 2978–2983.
https://doi.org/10.1073/pnas.1418494112
-
Shin, D. H., Heo, M. B., & Lim, Y. T. (2015). Self-assembled polyelectrolyte nanoparticles as fluorophore-free contrast agents for multicolor optical imaging.
Molecules (Basel, Switzerland),
20(3), 4369–4382.
https://doi.org/10.3390/molecules20034369
-
Eom, H. J., Jeong, J. S., & Choi, J. (2015). Effect of aspect ratio on the uptake and toxicity of hydroxylated-multi walled carbon nanotubes in the nematode, Caenorhabditis elegans.
Environmental health and toxicology,
30, e2015001.
https://doi.org/10.5620/eht.e2015001
-
Abouelmagd, S. A., Sun, B., Chang, A. C., Ku, Y. J., & Yeo, Y. (2015). Release kinetics study of poorly water-soluble drugs from nanoparticles: are we doing it right?.
Molecular pharmaceutics,
12(3), 997–1003.
https://doi.org/10.1021/mp500817h
-
Rahman, H. S., Rasedee, A., How, C. W., Zeenathul, N. A., Chartrand, M. S., Yeap, S. K., Abdul, A. B., Tan, S. W., Othman, H. H., Ajdari, Z., Namvar, F., Arulselvan, P., Fakurazi, S., Mehrbod, P., Daneshvar, N., & Begum, H. (2015). Antileukemic effect of zerumbone-loaded nanostructured lipid carrier in WEHI-3B cell-induced murine leukemia model.
International journal of nanomedicine,
10, 1649–1666.
https://doi.org/10.2147/IJN.S67113
-
-
Luo, D., Carter, K. A., & Lovell, J. F. (2015). Nanomedical engineering: shaping future nanomedicines.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology,
7(2), 169–188.
https://doi.org/10.1002/wnan.1315
-
Ghaz-Jahanian, M. A., Abbaspour-Aghdam, F., Anarjan, N., Berenjian, A., & Jafarizadeh-Malmiri, H. (2015). Application of chitosan-based nanocarriers in tumor-targeted drug delivery.
Molecular biotechnology,
57(3), 201–218.
https://doi.org/10.1007/s12033-014-9816-3
-
Kim, C., Tonga, G. Y., Yan, B., Kim, C. S., Kim, S. T., Park, M. H., Zhu, Z., Duncan, B., Creran, B., & Rotello, V. M. (2015). Regulating exocytosis of nanoparticles via host-guest chemistry.
Organic & biomolecular chemistry,
13(8), 2474–2479.
https://doi.org/10.1039/c4ob02433h
-
Li, X., Gao, C., Wu, Y., Cheng, C. Y., Xia, W., & Zhang, Z. (2015). Combination delivery of Adjudin and Doxorubicin
via integrating drug conjugation and nanocarrier approaches for the treatment of drug-resistant cancer cells.
Journal of materials chemistry. B,
3(8), 1556–1564.
https://doi.org/10.1039/c4tb01764a
-
Waghela, B. N., Sharma, A., Dhumale, S., Pandey, S. M., & Pathak, C. (2015). Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells.
PloS one,
10(2), e0117526.
https://doi.org/10.1371/journal.pone.0117526
-
Toporkiewicz, M., Meissner, J., Matusewicz, L., Czogalla, A., & Sikorski, A. F. (2015). Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges.
International journal of nanomedicine,
10, 1399–1414.
https://doi.org/10.2147/IJN.S74514
-
Chiarelli, P. A., Kievit, F. M., Zhang, M., & Ellenbogen, R. G. (2015). Bionanotechnology and the future of glioma.
Surgical neurology international,
6(Suppl 1), S45–S58.
https://doi.org/10.4103/2152-7806.151334
-
Jiang, T., Sun, W., Zhu, Q., Burns, N. A., Khan, S. A., Mo, R., & Gu, Z. (2015). Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene.
Advanced materials (Deerfield Beach, Fla.),
27(6), 1021–1028.
https://doi.org/10.1002/adma.201404498
-
Ediriwickrema, A., & Saltzman, W. M. (2015). Nanotherapy for Cancer: Targeting and Multifunctionality in the Future of Cancer Therapies.
ACS biomaterials science & engineering,
1(2), 64–78.
https://doi.org/10.1021/ab500084g
-
Zhu, Y., Zhang, Y., Shi, G., Yang, J., Zhang, J., Li, W., Li, A., Tai, R., Fang, H., Fan, C., & Huang, Q. (2015). Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity.
Particle and fibre toxicology,
12, 2.
https://doi.org/10.1186/s12989-014-0075-z
-
Prabhu, R. H., Patravale, V. B., & Joshi, M. D. (2015). Polymeric nanoparticles for targeted treatment in oncology: current insights.
International journal of nanomedicine,
10, 1001–1018.
https://doi.org/10.2147/IJN.S56932
-
-
-
Kumar, R., Belz, J., Markovic, S., Jadhav, T., Fowle, W., Niedre, M., Cormack, R., Makrigiorgos, M. G., & Sridhar, S. (2015). Nanoparticle-based brachytherapy spacers for delivery of localized combined chemoradiation therapy.
International journal of radiation oncology, biology, physics,
91(2), 393–400.
https://doi.org/10.1016/j.ijrobp.2014.10.041
-
Petschauer, J. S., Madden, A. J., Kirschbrown, W. P., Song, G., & Zamboni, W. C. (2015). The effects of nanoparticle drug loading on the pharmacokinetics of anticancer agents.
Nanomedicine (London, England),
10(3), 447–463.
https://doi.org/10.2217/nnm.14.179
-
Ma, M., Weng, M., Zhang, M., Qin, Y., Gong, W., & Quan, Z. (2015). Targeting gallbladder cancer: hyaluronan sensitizes cancer cells to chemo-therapeutics. International journal of clinical and experimental pathology, 8(2), 1822–1825.
-
Zhang, X. Q., Even-Or, O., Xu, X., van Rosmalen, M., Lim, L., Gadde, S., Farokhzad, O. C., & Fisher, E. A. (2015). Nanoparticles containing a liver X receptor agonist inhibit inflammation and atherosclerosis.
Advanced healthcare materials,
4(2), 228–236.
https://doi.org/10.1002/adhm.201400337
-
Liu, Y., Chen, C., Qian, P., Lu, X., Sun, B., Zhang, X., Wang, L., Gao, X., Li, H., Chen, Z., Tang, J., Zhang, W., Dong, J., Bai, R., Lobie, P. E., Wu, Q., Liu, S., Zhang, H., Zhao, F., Wicha, M. S., … Zhao, Y. (2015). Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor.
Nature communications,
6, 5988.
https://doi.org/10.1038/ncomms6988
-
Li, Z., & Gorfe, A. A. (2015). Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations.
Nanoscale,
7(2), 814–824.
https://doi.org/10.1039/c4nr04834b
-
Black, K. C., Akers, W. J., Sudlow, G., Xu, B., Laforest, R., & Achilefu, S. (2015). Dual-radiolabeled nanoparticle SPECT probes for bioimaging.
Nanoscale,
7(2), 440–444.
https://doi.org/10.1039/c4nr05269b
-
Yamamoto, H., Wu, X., Nakanishi, H., Yamamoto, Y., Uemura, M., Hata, T., Nishimura, J., Takemasa, I., Mizushima, T., Sasaki, J., Imazato, S., Matsuura, N., Doki, Y., & Mori, M. (2015). A glucose carbonate apatite complex exhibits in vitro and in vivo anti-tumour effects.
Scientific reports,
5, 7742.
https://doi.org/10.1038/srep07742
-
Liu, J., Liu, W., Weitzhandler, I., Bhattacharyya, J., Li, X., Wang, J., Qi, Y., Bhattacharjee, S., & Chilkoti, A. (2015). Ring-opening polymerization of prodrugs: a versatile approach to prepare well-defined drug-loaded nanoparticles.
Angewandte Chemie (International ed. in English),
54(3), 1002–1006.
https://doi.org/10.1002/anie.201409293
-
Wu, T. T., & Zhou, S. H. (2015). Nanoparticle-based targeted therapeutics in head-and-neck cancer.
International journal of medical sciences,
12(2), 187–200.
https://doi.org/10.7150/ijms.10083
-
Kue, C. S., Kamkaew, A., Lee, H. B., Chung, L. Y., Kiew, L. V., & Burgess, K. (2015). Targeted PDT agent eradicates TrkC expressing tumors via photodynamic therapy (PDT).
Molecular pharmaceutics,
12(1), 212–222.
https://doi.org/10.1021/mp5005564
-
Zhou, C., Chen, T., Wu, C., Zhu, G., Qiu, L., Cui, C., Hou, W., & Tan, W. (2015). Aptamer CaCO3 nanostructures: a facile, pH-responsive, specific platform for targeted anticancer theranostics.
Chemistry, an Asian journal,
10(1), 166–171.
https://doi.org/10.1002/asia.201403115
-
Bugno, J., Hsu, H. J., & Hong, S. (2015). Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: potential nanocarriers for improved cancer targeting.
Journal of drug targeting,
23(7-8), 642–650.
https://doi.org/10.3109/1061186X.2015.1052077
-
Veiseh, O., Tang, B. C., Whitehead, K. A., Anderson, D. G., & Langer, R. (2015). Managing diabetes with nanomedicine: challenges and opportunities.
Nature reviews. Drug discovery,
14(1), 45–57.
https://doi.org/10.1038/nrd4477
-
Taylor, K., Howard, C. B., Jones, M. L., Sedliarou, I., MacDiarmid, J., Brahmbhatt, H., Munro, T. P., & Mahler, S. M. (2015). Nanocell targeting using engineered bispecific antibodies.
mAbs,
7(1), 53–65.
https://doi.org/10.4161/19420862.2014.985952
-
Chattopadhyay, S., Dash, S. K., Tripathy, S., Pramanik, P., & Roy, S. (2015). Phosphonomethyl iminodiacetic acid-conjugated cobalt oxide nanoparticles liberate Co(++) ion-induced stress associated activation of TNF-α/p38 MAPK/caspase 8-caspase 3 signaling in human leukemia cells.
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry,
20(1), 123–141.
https://doi.org/10.1007/s00775-014-1221-7
-
Meng, H., Wang, M., Liu, H., Liu, X., Situ, A., Wu, B., Ji, Z., Chang, C. H., & Nel, A. E. (2015). Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice.
ACS nano,
9(4), 3540–3557.
https://doi.org/10.1021/acsnano.5b00510
-
Maswadeh, H. M., Aljarbou, A. N., Alorainy, M. S., Alsharidah, M. S., & Khan, M. A. (2015). Etoposide incorporated into camel milk phospholipids liposomes shows increased activity against fibrosarcoma in a mouse model.
BioMed research international,
2015, 743051.
https://doi.org/10.1155/2015/743051
-
Tu, C., Das, S., Baker, A. B., Zoldan, J., & Suggs, L. J. (2015). Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia.
ACS nano,
9(4), 3436–3452.
https://doi.org/10.1021/nn507269g
-
Khan, S., Chauhan, N., Yallapu, M. M., Ebeling, M. C., Balakrishna, S., Ellis, R. T., Thompson, P. A., Balabathula, P., Behrman, S. W., Zafar, N., Singh, M. M., Halaweish, F. T., Jaggi, M., & Chauhan, S. C. (2015). Nanoparticle formulation of ormeloxifene for pancreatic cancer.
Biomaterials,
53, 731–743.
https://doi.org/10.1016/j.biomaterials.2015.02.082
-
Shi, Y., Kunjachan, S., Wu, Z., Gremse, F., Moeckel, D., van Zandvoort, M., Kiessling, F., Storm, G., van Nostrum, C. F., Hennink, W. E., & Lammers, T. (2015). Fluorophore labeling of core-crosslinked polymeric micelles for multimodal in vivo and ex vivo optical imaging.
Nanomedicine (London, England),
10(7), 1111–1125.
https://doi.org/10.2217/nnm.14.170
-
Chenel, V., Boissy, P., Cloarec, J. P., & Patenaude, J. (2015). Effects of disciplinary cultures of researchers and research trainees on the acceptability of nanocarriers for drug delivery in different contexts of use: a mixed-methods study.
Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology,
17(4), 186.
https://doi.org/10.1007/s11051-015-2998-1
-
Sobczynski, D. J., Fish, M. B., Fromen, C. A., Carasco-Teja, M., Coleman, R. M., & Eniola-Adefeso, O. (2015). Drug carrier interaction with blood: a critical aspect for high-efficient vascular-targeted drug delivery systems.
Therapeutic delivery,
6(8), 915–934.
https://doi.org/10.4155/TDE.15.38
-
Rahmani, S., Villa, C. H., Dishman, A. F., Grabowski, M. E., Pan, D. C., Durmaz, H., Misra, A. C., Colón-Meléndez, L., Solomon, M. J., Muzykantov, V. R., & Lahann, J. (2015). Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications.
Journal of drug targeting,
23(7-8), 750–758.
https://doi.org/10.3109/1061186X.2015.1076428
-
-
Zare-Zardini, H., Amiri, A., Shanbedi, M., Taheri-Kafrani, A., Sadri, Z., Ghanizadeh, F., Neamatzadeh, H., Sheikhpour, R., Keyvani Boroujeni, F., Masoumi Dehshiri, R., Hashemi, A., Aminorroaya, M. M., Dehgahnzadeh, M. R., & Shahriari, S. h. (2015). Nanotechnology and Pediatric Cancer: Prevention, Diagnosis and Treatment. Iranian journal of pediatric hematology and oncology, 5(4), 233–248.
-
Wang, Q., Zhang, C., Shen, G., Liu, H., Fu, H., & Cui, D. (2014). Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells.
Journal of nanobiotechnology,
12, 58.
https://doi.org/10.1186/s12951-014-0058-0
-
Zhao, X., Chen, Q., Liu, W., Li, Y., Tang, H., Liu, X., & Yang, X. (2014). Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer.
International journal of nanomedicine,
10, 257–270.
https://doi.org/10.2147/IJN.S73322
-
Luk, B. T., & Zhang, L. (2014). Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis.
ACS applied materials & interfaces,
6(24), 21859–21873.
https://doi.org/10.1021/am5036225
-
Moon, H., Lee, J., Kim, H., Heo, S., Min, J., & Kang, S. (2014). Genetically engineering encapsulin protein cage nanoparticle as a SCC-7 cell targeting optical nanoprobe.
Biomaterials research,
18, 21.
https://doi.org/10.1186/2055-7124-18-21
-
-
Williford, J. M., Ren, Y., Huang, K., Pan, D., & Mao, H. Q. (2014). Shape Transformation Following Reduction-Sensitive PEG Cleavage of Polymer/DNA Nanoparticles.
Journal of materials chemistry. B,
2(46), 8106–8109.
https://doi.org/10.1039/C4TB00967C
-
Lu, Y., Mo, R., Tai, W., Sun, W., Pacardo, D. B., Qian, C., Shen, Q., Ligler, F. S., & Gu, Z. (2014). Self-folded redox/acid dual-responsive nanocarriers for anticancer drug delivery.
Chemical communications (Cambridge, England),
50(95), 15105–15108.
https://doi.org/10.1039/c4cc07004f
-
-
Emoto, S., Sunami, E., Yamaguchi, H., Ishihara, S., Kitayama, J., & Watanabe, T. (2014). Drug development for intraperitoneal chemotherapy against peritoneal carcinomatosis from gastrointestinal cancer.
Surgery today,
44(12), 2209–2220.
https://doi.org/10.1007/s00595-014-0848-x
-
-
Hoch, U., Staschen, C. M., Johnson, R. K., & Eldon, M. A. (2014). Nonclinical pharmacokinetics and activity of etirinotecan pegol (NKTR-102), a long-acting topoisomerase 1 inhibitor, in multiple cancer models.
Cancer chemotherapy and pharmacology,
74(6), 1125–1137.
https://doi.org/10.1007/s00280-014-2577-7
-
Song, G., Darr, D. B., Santos, C. M., Ross, M., Valdivia, A., Jordan, J. L., Midkiff, B. R., Cohen, S., Nikolaishvili-Feinberg, N., Miller, C. R., Tarrant, T. K., Rogers, A. B., Dudley, A. C., Perou, C. M., & Zamboni, W. C. (2014). Effects of tumor microenvironment heterogeneity on nanoparticle disposition and efficacy in breast cancer tumor models.
Clinical cancer research : an official journal of the American Association for Cancer Research,
20(23), 6083–6095.
https://doi.org/10.1158/1078-0432.CCR-14-0493
-
Lai, Y. T., Reading, E., Hura, G. L., Tsai, K. L., Laganowsky, A., Asturias, F. J., Tainer, J. A., Robinson, C. V., & Yeates, T. O. (2014). Structure of a designed protein cage that self-assembles into a highly porous cube.
Nature chemistry,
6(12), 1065–1071.
https://doi.org/10.1038/nchem.2107
-
Chitkara, D., Mittal, A., Mahato, R. I., & Kumar, N. (2014). Core-shell nanoparticulate formulation of gemcitabine: lyophilization, stability studies, and in vivo evaluation.
Drug delivery and translational research,
4(5-6), 439–451.
https://doi.org/10.1007/s13346-014-0206-y
-
Yang, X., Wu, S., Wang, Y., Li, Y., Chang, D., Luo, Y., Ye, S., & Hou, Z. (2014). Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles.
Nanoscale research letters,
9(1), 2408.
https://doi.org/10.1186/1556-276X-9-687
-
Sun, W., Lu, Y., & Gu, Z. (2014). Advances in Anticancer Protein Delivery Using Micro-/ Nanoparticles.
Particle & particle systems characterization : measurement and description of particle properties and behavior in powders and other disperse systems,
31(12), 1204–1222.
https://doi.org/10.1002/ppsc.201400140
-
Lu, Y., Sun, W., & Gu, Z. (2014). Stimuli-responsive nanomaterials for therapeutic protein delivery.
Journal of controlled release : official journal of the Controlled Release Society,
194, 1–19.
https://doi.org/10.1016/j.jconrel.2014.08.015
-
Peddada, L. Y., Garbuzenko, O. B., Devore, D. I., Minko, T., & Roth, C. M. (2014). Delivery of antisense oligonucleotides using poly(alkylene oxide)-poly(propylacrylic acid) graft copolymers in conjunction with cationic liposomes.
Journal of controlled release : official journal of the Controlled Release Society,
194, 103–112.
https://doi.org/10.1016/j.jconrel.2014.08.023
-
Pearson, R. M., Juettner, V. V., & Hong, S. (2014). Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery.
Frontiers in chemistry,
2, 108.
https://doi.org/10.3389/fchem.2014.00108
-
Conniot, J., Silva, J. M., Fernandes, J. G., Silva, L. C., Gaspar, R., Brocchini, S., Florindo, H. F., & Barata, T. S. (2014). Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking.
Frontiers in chemistry,
2, 105.
https://doi.org/10.3389/fchem.2014.00105
-
Anselmo, A. C., Modery-Pawlowski, C. L., Menegatti, S., Kumar, S., Vogus, D. R., Tian, L. L., Chen, M., Squires, T. M., Sen Gupta, A., & Mitragotri, S. (2014). Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries.
ACS nano,
8(11), 11243–11253.
https://doi.org/10.1021/nn503732m
-
Thorley, A. J., Ruenraroengsak, P., Potter, T. E., & Tetley, T. D. (2014). Critical determinants of uptake and translocation of nanoparticles by the human pulmonary alveolar epithelium.
ACS nano,
8(11), 11778–11789.
https://doi.org/10.1021/nn505399e
-
-
-
Chakravarty, R., Hong, H., & Cai, W. (2014). Positron emission tomography image-guided drug delivery: current status and future perspectives.
Molecular pharmaceutics,
11(11), 3777–3797.
https://doi.org/10.1021/mp500173s
-
Shukla, P., Rao, G. M., Pandey, G., Sharma, S., Mittapelly, N., Shegokar, R., & Mishra, P. R. (2014). Therapeutic interventions in sepsis: current and anticipated pharmacological agents.
British journal of pharmacology,
171(22), 5011–5031.
https://doi.org/10.1111/bph.12829
-
Roh, Y. H., Lee, J. B., Shopsowitz, K. E., Dreaden, E. C., Morton, S. W., Poon, Z., Hong, J., Yamin, I., Bonner, D. K., & Hammond, P. T. (2014). Layer-by-layer assembled antisense DNA microsponge particles for efficient delivery of cancer therapeutics.
ACS nano,
8(10), 9767–9780.
https://doi.org/10.1021/nn502596b
-
Li, X., Robinson, S. M., Gupta, A., Saha, K., Jiang, Z., Moyano, D. F., Sahar, A., Riley, M. A., & Rotello, V. M. (2014). Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria.
ACS nano,
8(10), 10682–10686.
https://doi.org/10.1021/nn5042625
-
Tang, L., Yang, X., Yin, Q., Cai, K., Wang, H., Chaudhury, I., Yao, C., Zhou, Q., Kwon, M., Hartman, J. A., Dobrucki, I. T., Dobrucki, L. W., Borst, L. B., Lezmi, S., Helferich, W. G., Ferguson, A. L., Fan, T. M., & Cheng, J. (2014). Investigating the optimal size of anticancer nanomedicine.
Proceedings of the National Academy of Sciences of the United States of America,
111(43), 15344–15349.
https://doi.org/10.1073/pnas.1411499111
-
Raskatov, J. A., Szablowski, J. O., & Dervan, P. B. (2014). Tumor xenograft uptake of a pyrrole-imidazole (Py-Im) polyamide varies as a function of cell line grafted.
Journal of medicinal chemistry,
57(20), 8471–8476.
https://doi.org/10.1021/jm500964c
-
Wang, Y., Lin, F. X., Zhao, Y., Wang, M. Z., Ge, X. W., Gong, Z. X., Bao, D. D., & Gu, Y. F. (2014). The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles.
International journal of nanomedicine,
9, 4965–4978.
https://doi.org/10.2147/IJN.S58104
-
Moyer, T. J., Finbloom, J. A., Chen, F., Toft, D. J., Cryns, V. L., & Stupp, S. I. (2014). pH and amphiphilic structure direct supramolecular behavior in biofunctional assemblies.
Journal of the American Chemical Society,
136(42), 14746–14752.
https://doi.org/10.1021/ja5042429
-
Sun, W., Jiang, T., Lu, Y., Reiff, M., Mo, R., & Gu, Z. (2014). Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery.
Journal of the American Chemical Society,
136(42), 14722–14725.
https://doi.org/10.1021/ja5088024
-
Li, L., & Thayumanavan, S. (2014). Environment-dependent guest exchange in supramolecular hosts.
Langmuir : the ACS journal of surfaces and colloids,
30(41), 12384–12390.
https://doi.org/10.1021/la502760c
-
Sivasubramanian, M., Hsia, Y., & Lo, L. W. (2014). Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer.
Frontiers in molecular biosciences,
1, 15.
https://doi.org/10.3389/fmolb.2014.00015
-
Tai, W., Mo, R., Di, J., Subramanian, V., Gu, X., Buse, J. B., & Gu, Z. (2014). Bio-inspired synthetic nanovesicles for glucose-responsive release of insulin.
Biomacromolecules,
15(10), 3495–3502.
https://doi.org/10.1021/bm500364a
-
Sunoqrot, S., Bugno, J., Lantvit, D., Burdette, J. E., & Hong, S. (2014). Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles.
Journal of controlled release : official journal of the Controlled Release Society,
191, 115–122.
https://doi.org/10.1016/j.jconrel.2014.05.006
-
Fanciullino, R., Mollard, S., Correard, F., Giacometti, S., Serdjebi, C., Iliadis, A., & Ciccolini, J. (2014). Biodistribution, tumor uptake and efficacy of 5-FU-loaded liposomes: why size matters.
Pharmaceutical research,
31(10), 2677–2684.
https://doi.org/10.1007/s11095-014-1364-9
-
Patel, A. R., Chougule, M., & Singh, M. (2014). EphA2 targeting pegylated nanocarrier drug delivery system for treatment of lung cancer.
Pharmaceutical research,
31(10), 2796–2809.
https://doi.org/10.1007/s11095-014-1377-4
-
Kaushik, A., Jayant, R. D., Sagar, V., & Nair, M. (2014). The potential of magneto-electric nanocarriers for drug delivery.
Expert opinion on drug delivery,
11(10), 1635–1646.
https://doi.org/10.1517/17425247.2014.933803
-
Gowda, R., Madhunapantula, S. V., Sharma, A., Kuzu, O. F., & Robertson, G. P. (2014). Nanolipolee-007, a novel nanoparticle-based drug containing leelamine for the treatment of melanoma.
Molecular cancer therapeutics,
13(10), 2328–2340.
https://doi.org/10.1158/1535-7163.MCT-14-0357
-
Emblem, K. E., Farrar, C. T., Gerstner, E. R., Batchelor, T. T., Borra, R. J., Rosen, B. R., Sorensen, A. G., & Jain, R. K. (2014). Vessel caliber--a potential MRI biomarker of tumour response in clinical trials.
Nature reviews. Clinical oncology,
11(10), 566–584.
https://doi.org/10.1038/nrclinonc.2014.126
-
Dadgar, N., Koohi Moftakhari Esfahani, M., Torabi, S., Alavi, S. E., & Akbarzadeh, A. (2014). Effects of nanoliposomal and pegylated nanoliposomal artemisinin in treatment of breast cancer.
Indian journal of clinical biochemistry : IJCB,
29(4), 501–504.
https://doi.org/10.1007/s12291-013-0389-x
-
Bhavana, S. M., & Lakshmi, C. R. (2014). Oral oncoprevention by phytochemicals - a systematic review disclosing the therapeutic dilemma.
Advanced pharmaceutical bulletin,
4(Suppl 1), 413–420.
https://doi.org/10.5681/apb.2014.061
-
Key, J., Kim, Y. S., Tatulli, F., Palange, A. L., O'Neill, B., Aryal, S., Ramirez, M., Liu, X., Ferrari, M., Munden, R., & Decuzzi, P. (2014). Opportunities for NanoTheranosis in Lung Cancer and Pulmonary Metastasis.
Clinical and translational imaging,
2(5), 427–437.
https://doi.org/10.1007/s40336-014-0078-7
-
Khatri, S., Das, N. G., & Das, S. K. (2014). Effect of methotrexate conjugated PAMAM dendrimers on the viability of MES-SA uterine cancer cells.
Journal of pharmacy & bioallied sciences,
6(4), 297–302.
https://doi.org/10.4103/0975-7406.142963
-
Anselmo, A. C., & Mitragotri, S. (2014). An overview of clinical and commercial impact of drug delivery systems.
Journal of controlled release : official journal of the Controlled Release Society,
190, 15–28.
https://doi.org/10.1016/j.jconrel.2014.03.053
-
Anselmo, A. C., & Mitragotri, S. (2014). Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles.
Journal of controlled release : official journal of the Controlled Release Society,
190, 531–541.
https://doi.org/10.1016/j.jconrel.2014.03.050
-
Gizzatov, A., Stigliano, C., Ananta, J. S., Sethi, R., Xu, R., Guven, A., Ramirez, M., Shen, H., Sood, A., Ferrari, M., Wilson, L. J., Liu, X., & Decuzzi, P. (2014). Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer.
Cancer letters,
352(1), 97–101.
https://doi.org/10.1016/j.canlet.2014.06.001
-
Anikeeva, N., Sykulev, Y., Delikatny, E. J., & Popov, A. V. (2014). Core-based lipid nanoparticles as a nanoplatform for delivery of near-infrared fluorescent imaging agents. American journal of nuclear medicine and molecular imaging, 4(6), 507–524.
-
Xue, W., Dahlman, J. E., Tammela, T., Khan, O. F., Sood, S., Dave, A., Cai, W., Chirino, L. M., Yang, G. R., Bronson, R., Crowley, D. G., Sahay, G., Schroeder, A., Langer, R., Anderson, D. G., & Jacks, T. (2014). Small RNA combination therapy for lung cancer.
Proceedings of the National Academy of Sciences of the United States of America,
111(34), E3553–E3561.
https://doi.org/10.1073/pnas.1412686111
-
Wang, J., Zhu, R., Sun, X., Zhu, Y., Liu, H., & Wang, S. L. (2014). Intracellular uptake of etoposide-loaded solid lipid nanoparticles induces an enhancing inhibitory effect on gastric cancer through mitochondria-mediated apoptosis pathway.
International journal of nanomedicine,
9, 3987–3998.
https://doi.org/10.2147/IJN.S64103
-
Yokoi, K., Kojic, M., Milosevic, M., Tanei, T., Ferrari, M., & Ziemys, A. (2014). Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment.
Cancer research,
74(16), 4239–4246.
https://doi.org/10.1158/0008-5472.CAN-13-3494
-
Sun, H., Meng, F., Cheng, R., Deng, C., & Zhong, Z. (2014). Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release.
Antioxidants & redox signaling,
21(5), 755–767.
https://doi.org/10.1089/ars.2013.5733
-
Dawidczyk, C. M., Kim, C., Park, J. H., Russell, L. M., Lee, K. H., Pomper, M. G., & Searson, P. C. (2014). State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines.
Journal of controlled release : official journal of the Controlled Release Society,
187, 133–144.
https://doi.org/10.1016/j.jconrel.2014.05.036
-
Lin, Y., & Hamme Ii, A. T. (2014). Targeted highly sensitive detection/eradication of multi-drug resistant Salmonella DT104 through gold nanoparticle-SWCNT bioconjugated nanohybrids.
The Analyst,
139(15), 3702–3705.
https://doi.org/10.1039/c4an00744a
-
Bao, G., Bazilevs, Y., Chung, J. H., Decuzzi, P., Espinosa, H. D., Ferrari, M., Gao, H., Hossain, S. S., Hughes, T. J., Kamm, R. D., Liu, W. K., Marsden, A., & Schrefler, B. (2014). USNCTAM perspectives on mechanics in medicine.
Journal of the Royal Society, Interface,
11(97), 20140301.
https://doi.org/10.1098/rsif.2014.0301
-
Pan-In, P., Wanichwecharungruang, S., Hanes, J., & Kim, A. J. (2014). Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles.
International journal of nanomedicine,
9, 3677–3686.
https://doi.org/10.2147/IJN.S66511
-
Tai, W., Mo, R., Lu, Y., Jiang, T., & Gu, Z. (2014). Folding graft copolymer with pendant drug segments for co-delivery of anticancer drugs.
Biomaterials,
35(25), 7194–7203.
https://doi.org/10.1016/j.biomaterials.2014.05.004
-
Lin, J., Shigdar, S., Fang, D. Z., Xiang, D., Wei, M. Q., Danks, A., Kong, L., Li, L., Qiao, L., & Duan, W. (2014). Improved efficacy and reduced toxicity of doxorubicin encapsulated in sulfatide-containing nanoliposome in a glioma model.
PloS one,
9(7), e103736.
https://doi.org/10.1371/journal.pone.0103736
-
Luo, F., Li, Y., Jia, M., Cui, F., Wu, H., Yu, F., Lin, J., Yang, X., Hou, Z., & Zhang, Q. (2014). Validation of a Janus role of methotrexate-based PEGylated chitosan nanoparticles in vitro.
Nanoscale research letters,
9(1), 363.
https://doi.org/10.1186/1556-276X-9-363
-
Marrache, S., Pathak, R. K., & Dhar, S. (2014). Detouring of cisplatin to access mitochondrial genome for overcoming resistance.
Proceedings of the National Academy of Sciences of the United States of America,
111(29), 10444–10449.
https://doi.org/10.1073/pnas.1405244111
-
Gao, W., Lin, Z., Chen, M., Yang, X., Cui, Z., Zhang, X., Yuan, L., & Zhang, Q. (2014). The co-delivery of a low-dose P-glycoprotein inhibitor with doxorubicin sterically stabilized liposomes against breast cancer with low P-glycoprotein expression.
International journal of nanomedicine,
9, 3425–3437.
https://doi.org/10.2147/IJN.S56070
-
Wang, Y., Shim, M. S., Levinson, N. S., Sung, H. W., & Xia, Y. (2014). Stimuli-Responsive Materials for Controlled Release of Theranostic Agents.
Advanced functional materials,
24(27), 4206–4220.
https://doi.org/10.1002/adfm.201400279
-
Guan, S. S., Chang, J., Cheng, C. C., Luo, T. Y., Ho, A. S., Wang, C. C., Wu, C. T., & Liu, S. H. (2014). Afatinib and its encapsulated polymeric micelles inhibits HER2-overexpressed colorectal tumor cell growth in vitro and in vivo.
Oncotarget,
5(13), 4868–4880.
https://doi.org/10.18632/oncotarget.2050
-
Shao, Y., Shi, C., Xu, G., Guo, D., & Luo, J. (2014). Photo and redox dual responsive reversibly cross-linked nanocarrier for efficient tumor-targeted drug delivery.
ACS applied materials & interfaces,
6(13), 10381–10392.
https://doi.org/10.1021/am501913m
-
Quadir, M. A., Morton, S. W., Deng, Z. J., Shopsowitz, K. E., Murphy, R. P., Epps, T. H., 3rd, & Hammond, P. T. (2014). PEG-polypeptide block copolymers as pH-responsive endosome-solubilizing drug nanocarriers.
Molecular pharmaceutics,
11(7), 2420–2430.
https://doi.org/10.1021/mp500162w
-
Suffredini, G., East, J. E., & Levy, L. M. (2014). New applications of nanotechnology for neuroimaging.
AJNR. American journal of neuroradiology,
35(7), 1246–1253.
https://doi.org/10.3174/ajnr.A3543
-
Palange, A. L., Di Mascolo, D., Carallo, C., Gnasso, A., & Decuzzi, P. (2014). Lipid-polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells.
Nanomedicine : nanotechnology, biology, and medicine,
10(5), 991–1002.
https://doi.org/10.1016/j.nano.2014.02.004
-
Blanco, E., Sangai, T., Wu, S., Hsiao, A., Ruiz-Esparza, G. U., Gonzalez-Delgado, C. A., Cara, F. E., Granados-Principal, S., Evans, K. W., Akcakanat, A., Wang, Y., Do, K. A., Meric-Bernstam, F., & Ferrari, M. (2014). Colocalized delivery of rapamycin and paclitaxel to tumors enhances synergistic targeting of the PI3K/Akt/mTOR pathway.
Molecular therapy : the journal of the American Society of Gene Therapy,
22(7), 1310–1319.
https://doi.org/10.1038/mt.2014.27
-
Lukianova-Hleb, E. Y., Ren, X., Sawant, R. R., Wu, X., Torchilin, V. P., & Lapotko, D. O. (2014). On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles.
Nature medicine,
20(7), 778–784.
https://doi.org/10.1038/nm.3484
-
Bedi, D., Gillespie, J. W., & Petrenko, V. A. (2014). Selection of pancreatic cancer cell-binding landscape phages and their use in development of anticancer nanomedicines.
Protein engineering, design & selection : PEDS,
27(7), 235–243.
https://doi.org/10.1093/protein/gzu020
-
Alexis F. (2014). Nano-polypharmacy to treat tumors: coencapsulation of drug combinations using nanoparticle technology.
Molecular therapy : the journal of the American Society of Gene Therapy,
22(7), 1239–1240.
https://doi.org/10.1038/mt.2014.96
-
Jeelani, S., Reddy, R. C., Maheswaran, T., Asokan, G. S., Dany, A., & Anand, B. (2014). Theranostics: A treasured tailor for tomorrow.
Journal of pharmacy & bioallied sciences,
6(Suppl 1), S6–S8.
https://doi.org/10.4103/0975-7406.137249
-
Baskaran, R., Madheswaran, T., Sundaramoorthy, P., Kim, H. M., & Yoo, B. K. (2014). Entrapment of curcumin into monoolein-based liquid crystalline nanoparticle dispersion for enhancement of stability and anticancer activity.
International journal of nanomedicine,
9, 3119–3130.
https://doi.org/10.2147/IJN.S61823
-
Qhattal, H. S., Hye, T., Alali, A., & Liu, X. (2014). Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes.
ACS nano,
8(6), 5423–5440.
https://doi.org/10.1021/nn405839n
-
Baldi, G., Ravagli, C., Mazzantini, F., Loudos, G., Adan, J., Masa, M., Psimadas, D., Fragogeorgi, E. A., Locatelli, E., Innocenti, C., Sangregorio, C., & Comes Franchini, M. (2014). In vivo anticancer evaluation of the hyperthermic efficacy of anti-human epidermal growth factor receptor-targeted PEG-based nanocarrier containing magnetic nanoparticles.
International journal of nanomedicine,
9, 3037–3056.
https://doi.org/10.2147/IJN.S61273
-
Nakano, T., Chin, C., Myint, D. M., Tan, E. W., Hale, P. J., Krishna M, B. M., Reynolds, J. N., Wickens, J., & Dani, K. M. (2014). Mimicking subsecond neurotransmitter dynamics with femtosecond laser stimulated nanosystems.
Scientific reports,
4, 5398.
https://doi.org/10.1038/srep05398
-
Sun, Z., Worden, M., Wroczynskyj, Y., Yathindranath, V., van Lierop, J., Hegmann, T., & Miller, D. W. (2014). Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier.
International journal of nanomedicine,
9, 3013–3026.
https://doi.org/10.2147/IJN.S62260
-
Pathak, R. K., McNitt, C. D., Popik, V. V., & Dhar, S. (2014). Copper-free click-chemistry platform to functionalize cisplatin prodrugs.
Chemistry (Weinheim an der Bergstrasse, Germany),
20(23), 6861–6865.
https://doi.org/10.1002/chem.201402573
-
-
Lee, T. R., Greene, M. S., Jiang, Z., Kopacz, A. M., Decuzzi, P., Chen, W., & Liu, W. K. (2014). Quantifying uncertainties in the microvascular transport of nanoparticles.
Biomechanics and modeling in mechanobiology,
13(3), 515–526.
https://doi.org/10.1007/s10237-013-0513-0
-
Zhang, S., Wu, J., Wang, H., Wang, T., Jin, L., Shu, D., Shan, W., & Xiong, S. (2014). Liposomal oxymatrine in hepatic fibrosis treatment: formulation, in vitro and in vivo assessment.
AAPS PharmSciTech,
15(3), 620–629.
https://doi.org/10.1208/s12249-014-0086-y
-
Singhana, B., Slattery, P., Chen, A., Wallace, M., & Melancon, M. P. (2014). Light-activatable gold nanoshells for drug delivery applications.
AAPS PharmSciTech,
15(3), 741–752.
https://doi.org/10.1208/s12249-014-0097-8
-
-
Theek, B., Gremse, F., Kunjachan, S., Fokong, S., Pola, R., Pechar, M., Deckers, R., Storm, G., Ehling, J., Kiessling, F., & Lammers, T. (2014). Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging.
Journal of controlled release : official journal of the Controlled Release Society,
182, 83–89.
https://doi.org/10.1016/j.jconrel.2014.03.007
-
Bhirde, A. A., Chikkaveeraiah, B. V., Srivatsan, A., Niu, G., Jin, A. J., Kapoor, A., Wang, Z., Patel, S., Patel, V., Gorbach, A. M., Leapman, R. D., Gutkind, J. S., Hight Walker, A. R., & Chen, X. (2014). Targeted therapeutic nanotubes influence the viscoelasticity of cancer cells to overcome drug resistance.
ACS nano,
8(5), 4177–4189.
https://doi.org/10.1021/nn501223q
-
Black, K. C., Wang, Y., Luehmann, H. P., Cai, X., Xing, W., Pang, B., Zhao, Y., Cutler, C. S., Wang, L. V., Liu, Y., & Xia, Y. (2014). Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution.
ACS nano,
8(5), 4385–4394.
https://doi.org/10.1021/nn406258m
-
Fajardo-Ortiz, D., Duran, L., Moreno, L., Ochoa, H., & Castaño, V. M. (2014). Liposomes versus metallic nanostructures: differences in the process of knowledge translation in cancer.
International journal of nanomedicine,
9, 2627–2634.
https://doi.org/10.2147/IJN.S62315
-
Orecchioni, M., Bedognetti, D., Sgarrella, F., Marincola, F. M., Bianco, A., & Delogu, L. G. (2014). Impact of carbon nanotubes and graphene on immune cells.
Journal of translational medicine,
12, 138.
https://doi.org/10.1186/1479-5876-12-138
-
Ye, W. L., Du, J. B., Zhang, B. L., Na, R., Song, Y. F., Mei, Q. B., Zhao, M. G., & Zhou, S. Y. (2014). Cellular uptake and antitumor activity of DOX-hyd-PEG-FA nanoparticles.
PloS one,
9(5), e97358.
https://doi.org/10.1371/journal.pone.0097358
-
Basha, R., Sabnis, N., Heym, K., Bowman, W. P., & Lacko, A. G. (2014). Targeted nanoparticles for pediatric leukemia therapy.
Frontiers in oncology,
4, 101.
https://doi.org/10.3389/fonc.2014.00101
-
Minami, K., Okamoto, K., Doi, K., Harano, K., Noiri, E., & Nakamura, E. (2014). siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene.
Scientific reports,
4, 4916.
https://doi.org/10.1038/srep04916
-
Ando, D., Zandi, R., Kim, Y. W., Colvin, M., Rexach, M., & Gopinathan, A. (2014). Nuclear pore complex protein sequences determine overall copolymer brush structure and function.
Biophysical journal,
106(9), 1997–2007.
https://doi.org/10.1016/j.bpj.2014.03.021
-
Zhao, L., Su, R., Cui, W., Shi, Y., Liu, L., & Su, C. (2014). Preparation of biocompatible heat-labile enterotoxin subunit B-bovine serum albumin nanoparticles for improving tumor-targeted drug delivery via heat-labile enterotoxin subunit B mediation.
International journal of nanomedicine,
9, 2149–2156.
https://doi.org/10.2147/IJN.S60764
-
Dickerson, M., Winquist, N., & Bae, Y. (2014). Photo-inducible crosslinked nanoassemblies for pH-controlled drug release.
Pharmaceutical research,
31(5), 1254–1263.
https://doi.org/10.1007/s11095-013-1246-6
-
Son, D., Lee, J., Qiao, S., Ghaffari, R., Kim, J., Lee, J. E., Song, C., Kim, S. J., Lee, D. J., Jun, S. W., Yang, S., Park, M., Shin, J., Do, K., Lee, M., Kang, K., Hwang, C. S., Lu, N., Hyeon, T., & Kim, D. H. (2014). Multifunctional wearable devices for diagnosis and therapy of movement disorders.
Nature nanotechnology,
9(5), 397–404.
https://doi.org/10.1038/nnano.2014.38
-
Chan, K. W., Yu, T., Qiao, Y., Liu, Q., Yang, M., Patel, H., Liu, G., Kinzler, K. W., Vogelstein, B., Bulte, J. W., van Zijl, P. C., Hanes, J., Zhou, S., & McMahon, M. T. (2014). A diaCEST MRI approach for monitoring liposomal accumulation in tumors.
Journal of controlled release : official journal of the Controlled Release Society,
180, 51–59.
https://doi.org/10.1016/j.jconrel.2014.02.005
-
-
Liao, L., Liu, J., Dreaden, E. C., Morton, S. W., Shopsowitz, K. E., Hammond, P. T., & Johnson, J. A. (2014). A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin.
Journal of the American Chemical Society,
136(16), 5896–5899.
https://doi.org/10.1021/ja502011g
-
Xu, Z., Wang, Y., Zhang, L., & Huang, L. (2014). Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment.
ACS nano,
8(4), 3636–3645.
https://doi.org/10.1021/nn500216y
-
Bogart, L. K., Pourroy, G., Murphy, C. J., Puntes, V., Pellegrino, T., Rosenblum, D., Peer, D., & Lévy, R. (2014). Nanoparticles for imaging, sensing, and therapeutic intervention.
ACS nano,
8(4), 3107–3122.
https://doi.org/10.1021/nn500962q
-
Hira, S. K., Mishra, A. K., Ray, B., & Manna, P. P. (2014). Targeted delivery of doxorubicin-loaded poly (ε-caprolactone)-b-poly (N-vinylpyrrolidone) micelles enhances antitumor effect in lymphoma.
PloS one,
9(4), e94309.
https://doi.org/10.1371/journal.pone.0094309
-
Fan, Z., Dai, X., Lu, Y., Yu, E., Brahmbatt, N., Carter, N., Tchouwou, C., Singh, A. K., Jones, Y., Yu, H., & Ray, P. C. (2014). Enhancing targeted tumor treatment by near IR light-activatable photodynamic-photothermal synergistic therapy.
Molecular pharmaceutics,
11(4), 1109–1116.
https://doi.org/10.1021/mp4002816
-
Peng, J., Qi, T., Liao, J., Chu, B., Yang, Q., Qu, Y., Li, W., Li, H., Luo, F., & Qian, Z. (2014). Mesoporous magnetic gold "nanoclusters" as theranostic carrier for chemo-photothermal co-therapy of breast cancer.
Theranostics,
4(7), 678–692.
https://doi.org/10.7150/thno.7869
-
Carter, K. A., Shao, S., Hoopes, M. I., Luo, D., Ahsan, B., Grigoryants, V. M., Song, W., Huang, H., Zhang, G., Pandey, R. K., Geng, J., Pfeifer, B. A., Scholes, C. P., Ortega, J., Karttunen, M., & Lovell, J. F. (2014). Porphyrin-phospholipid liposomes permeabilized by near-infrared light.
Nature communications,
5, 3546.
https://doi.org/10.1038/ncomms4546
-
-
-
Yu, Y., Huang, T., Wu, Y., Ma, X., Yu, G., & Qi, J. (2014). In-vitro and in-vivo imaging of prostate tumor using NaYF4: Yb, Er up-converting nanoparticles.
Pathology oncology research : POR,
20(2), 335–341.
https://doi.org/10.1007/s12253-013-9700-7
-
Wang, S., Su, R., Nie, S., Sun, M., Zhang, J., Wu, D., & Moustaid-Moussa, N. (2014). Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals.
The Journal of nutritional biochemistry,
25(4), 363–376.
https://doi.org/10.1016/j.jnutbio.2013.10.002
-
Gao, H., Hu, G., Zhang, Q., Zhang, S., Jiang, X., & He, Q. (2014). Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of G2 cycle retention effect.
Scientific reports,
4, 4492.
https://doi.org/10.1038/srep04492
-
Yurgel, V. C., Oliveira, C. P., Begnini, K. R., Schultze, E., Thurow, H. S., Leon, P. M., Dellagostin, O. A., Campos, V. F., Beck, R. C., Guterres, S. S., Collares, T., Pohlmann, A. R., & Seixas, F. K. (2014). Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line.
International journal of nanomedicine,
9, 1583–1591.
https://doi.org/10.2147/IJN.S56506
-
Mocan, L., Ilie, I., Matea, C., Tabaran, F., Kalman, E., Iancu, C., & Mocan, T. (2014). Surface plasmon resonance-induced photoactivation of gold nanoparticles as bactericidal agents against methicillin-resistant Staphylococcus aureus.
International journal of nanomedicine,
9, 1453–1461.
https://doi.org/10.2147/IJN.S54950
-
Huang, F., You, M., Chen, T., Zhu, G., Liang, H., & Tan, W. (2014). Self-assembled hybrid nanoparticles for targeted co-delivery of two drugs into cancer cells.
Chemical communications (Cambridge, England),
50(23), 3103–3105.
https://doi.org/10.1039/c3cc49003c
-
Kumari, A., Singla, R., Guliani, A., & Yadav, S. K. (2014). Nanoencapsulation for drug delivery. EXCLI journal, 13, 265–286.
-
Wu, L., Li, X., Janagam, D. R., & Lowe, T. L. (2014). Overcoming the blood-brain barrier in chemotherapy treatment of pediatric brain tumors.
Pharmaceutical research,
31(3), 531–540.
https://doi.org/10.1007/s11095-013-1196-z
-
You, J., Zhang, P., Hu, F., Du, Y., Yuan, H., Zhu, J., Wang, Z., Zhou, J., & Li, C. (2014). Near-infrared light-sensitive liposomes for the enhanced photothermal tumor treatment by the combination with chemotherapy.
Pharmaceutical research,
31(3), 554–565.
https://doi.org/10.1007/s11095-013-1180-7
-
Yefimova, S. L., Kurilchenko, I. Y., Tkacheva, T. N., Kavok, N. S., Todor, I. N., Lukianova, N. Y., Chekhun, V. F., & Malyukin, Y. V. (2014). Microspectroscopic Study of Liposome-to-cell Interaction Revealed by Förster Resonance Energy Transfer.
Journal of fluorescence,
24(2), 403–409.
https://doi.org/10.1007/s10895-013-1305-8
-
Chattopadhyay, S., Dash, S. K., Kar Mahapatra, S., Tripathy, S., Ghosh, T., Das, B., Das, D., Pramanik, P., & Roy, S. (2014). Chitosan-modified cobalt oxide nanoparticles stimulate TNF-α-mediated apoptosis in human leukemic cells.
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry,
19(3), 399–414.
https://doi.org/10.1007/s00775-013-1085-2
-
Xu, X., Sabanayagam, C. R., Harrington, D. A., Farach-Carson, M. C., & Jia, X. (2014). A hydrogel-based tumor model for the evaluation of nanoparticle-based cancer therapeutics.
Biomaterials,
35(10), 3319–3330.
https://doi.org/10.1016/j.biomaterials.2013.12.080
-
Fronczyk, K., Guindani, M., Vannucci, M., Palange, A., & Decuzzi, P. (2014). A Bayesian hierarchical model for maximizing the vascular adhesion of nanoparticles.
Computational mechanics,
53(3), 539–547.
https://doi.org/10.1007/s00466-013-0957-1
-
Liu, J., Ayyaswamy, P. S., Eckmann, D. M., & Radhakrishnan, R. (2014). Modelling of Binding Free Energy of Targeted Nanocarriers to Cell Surface.
Heat and mass transfer = Warme- und Stoffubertragung,
50(3), 315–321.
https://doi.org/10.1007/s00231-013-1274-0
-
Abdel-Wahhab, M. A., Abdel-Wahhab, K. G., Mannaa, F. A., Hassan, N. S., Safar, R., Diab, R., Foliguet, B., Ferrari, L., & Rihn, B. H. (2014). Uptake of Eudragit Retard L (Eudragit® RL) Nanoparticles by Human THP-1 Cell Line and Its Effects on Hematology and Erythrocyte Damage in Rats.
Materials (Basel, Switzerland),
7(3), 1555–1572.
https://doi.org/10.3390/ma7031555
-
Li, Y., Tong, Y., Cao, R., Tian, Z., Yang, B., & Yang, P. (2014). In vivo enhancement of anticancer therapy using bare or chemotherapeutic drug-bearing nanodiamond particles.
International journal of nanomedicine,
9, 1065–1082.
https://doi.org/10.2147/IJN.S54864
-
Liu, D., Lu, K., Poon, C., & Lin, W. (2014). Metal-organic frameworks as sensory materials and imaging agents.
Inorganic chemistry,
53(4), 1916–1924.
https://doi.org/10.1021/ic402194c
-
Kunjachan, S., Pola, R., Gremse, F., Theek, B., Ehling, J., Moeckel, D., Hermanns-Sachweh, B., Pechar, M., Ulbrich, K., Hennink, W. E., Storm, G., Lederle, W., Kiessling, F., & Lammers, T. (2014). Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines.
Nano letters,
14(2), 972–981.
https://doi.org/10.1021/nl404391r
-
Sur, S., Fries, A. C., Kinzler, K. W., Zhou, S., & Vogelstein, B. (2014). Remote loading of preencapsulated drugs into stealth liposomes.
Proceedings of the National Academy of Sciences of the United States of America,
111(6), 2283–2288.
https://doi.org/10.1073/pnas.1324135111
-
Min, Y., Li, J., Liu, F., Padmanabhan, P., Yeow, E. K., & Xing, B. (2014). Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials.
Nanomaterials (Basel, Switzerland),
4(1), 129–154.
https://doi.org/10.3390/nano4010129
-
-
Dam, D. H., Culver, K. S., & Odom, T. W. (2014). Grafting aptamers onto gold nanostars increases in vitro efficacy in a wide range of cancer cell types.
Molecular pharmaceutics,
11(2), 580–587.
https://doi.org/10.1021/mp4005657
-
Bertrand, N., Wu, J., Xu, X., Kamaly, N., & Farokhzad, O. C. (2014). Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology.
Advanced drug delivery reviews,
66, 2–25.
https://doi.org/10.1016/j.addr.2013.11.009
-
Ding, D., Tang, X., Cao, X., Wu, J., Yuan, A., Qiao, Q., Pan, J., & Hu, Y. (2014). Novel self-assembly endows human serum albumin nanoparticles with an enhanced antitumor efficacy.
AAPS PharmSciTech,
15(1), 213–222.
https://doi.org/10.1208/s12249-013-0041-3
-
Hapuarachchige, S., Zhu, W., Kato, Y., & Artemov, D. (2014). Bioorthogonal, two-component delivery systems based on antibody and drug-loaded nanocarriers for enhanced internalization of nanotherapeutics.
Biomaterials,
35(7), 2346–2354.
https://doi.org/10.1016/j.biomaterials.2013.11.075
-
DeWitt, M. R., Pekkanen, A. M., Robertson, J., Rylander, C. G., & Nichole Rylander, M. (2014). Influence of hyperthermia on efficacy and uptake of carbon nanohorn-cisplatin conjugates.
Journal of biomechanical engineering,
136(2), 021003.
https://doi.org/10.1115/1.4026318
-
Papa, S., Ferrari, R., De Paola, M., Rossi, F., Mariani, A., Caron, I., Sammali, E., Peviani, M., Dell'Oro, V., Colombo, C., Morbidelli, M., Forloni, G., Perale, G., Moscatelli, D., & Veglianese, P. (2014). Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury.
Journal of controlled release : official journal of the Controlled Release Society,
174, 15–26.
https://doi.org/10.1016/j.jconrel.2013.11.001
-
Olcum, S., Cermak, N., Wasserman, S. C., Christine, K. S., Atsumi, H., Payer, K. R., Shen, W., Lee, J., Belcher, A. M., Bhatia, S. N., & Manalis, S. R. (2014). Weighing nanoparticles in solution at the attogram scale.
Proceedings of the National Academy of Sciences of the United States of America,
111(4), 1310–1315.
https://doi.org/10.1073/pnas.1318602111
-
Kim, Y., Lobatto, M. E., Kawahara, T., Lee Chung, B., Mieszawska, A. J., Sanchez-Gaytan, B. L., Fay, F., Senders, M. L., Calcagno, C., Becraft, J., Tun Saung, M., Gordon, R. E., Stroes, E. S., Ma, M., Farokhzad, O. C., Fayad, Z. A., Mulder, W. J., & Langer, R. (2014). Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis.
Proceedings of the National Academy of Sciences of the United States of America,
111(3), 1078–1083.
https://doi.org/10.1073/pnas.1322725111
-
Sanna, V., Pala, N., & Sechi, M. (2014). Targeted therapy using nanotechnology: focus on cancer.
International journal of nanomedicine,
9, 467–483.
https://doi.org/10.2147/IJN.S36654
-
Sizovs, A., Song, X., Waxham, M. N., Jia, Y., Feng, F., Chen, J., Wicker, A. C., Xu, J., Yu, Y., & Wang, J. (2014). Precisely tunable engineering of sub-30 nm monodisperse oligonucleotide nanoparticles.
Journal of the American Chemical Society,
136(1), 234–240.
https://doi.org/10.1021/ja408879b
-
Srivatsan, A., Jenkins, S. V., Jeon, M., Wu, Z., Kim, C., Chen, J., & Pandey, R. K. (2014). Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy.
Theranostics,
4(2), 163–174.
https://doi.org/10.7150/thno.7064
-
Chang, C. H., Liu, S. Y., & Lee, T. W. (2014). Pharmacokinetics of BMEDA after intravenous administration in beagle dogs.
Molecules (Basel, Switzerland),
19(1), 538–549.
https://doi.org/10.3390/molecules19010538
-
Stojnev, S., Krstic, M., Ristic-Petrovic, A., Stefanovic, V., & Hattori, T. (2014). Gastric cancer stem cells: therapeutic targets.
Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association,
17(1), 13–25.
https://doi.org/10.1007/s10120-013-0254-x
-
Devulapally, R., & Paulmurugan, R. (2014). Polymer nanoparticles for drug and small silencing RNA delivery to treat cancers of different phenotypes.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology,
6(1), 40–60.
https://doi.org/10.1002/wnan.1242
-
Bolhassani, A., Javanzad, S., Saleh, T., Hashemi, M., Aghasadeghi, M. R., & Sadat, S. M. (2014). Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.
Human vaccines & immunotherapeutics,
10(2), 321–332.
https://doi.org/10.4161/hv.26796
-
Chung, E. J., Cheng, Y., Morshed, R., Nord, K., Han, Y., Wegscheid, M. L., Auffinger, B., Wainwright, D. A., Lesniak, M. S., & Tirrell, M. V. (2014). Fibrin-binding, peptide amphiphile micelles for targeting glioblastoma.
Biomaterials,
35(4), 1249–1256.
https://doi.org/10.1016/j.biomaterials.2013.10.064
-
Majumdar, D., Jung, K. H., Zhang, H., Nannapaneni, S., Wang, X., Amin, A. R., Chen, Z., Chen, Z. G., & Shin, D. M. (2014). Luteolin nanoparticle in chemoprevention: in vitro and in vivo anticancer activity.
Cancer prevention research (Philadelphia, Pa.),
7(1), 65–73.
https://doi.org/10.1158/1940-6207.CAPR-13-0230
-
Cormode, D. P., Naha, P. C., & Fayad, Z. A. (2014). Nanoparticle contrast agents for computed tomography: a focus on micelles.
Contrast media & molecular imaging,
9(1), 37–52.
https://doi.org/10.1002/cmmi.1551
-
Alavi, S. E., Esfahani, M. K., Ghassemi, S., Akbarzadeh, A., & Hassanshahi, G. (2014). In vitro evaluation of the efficacy of liposomal and pegylated liposomal hydroxyurea.
Indian journal of clinical biochemistry : IJCB,
29(1), 84–88.
https://doi.org/10.1007/s12291-013-0315-2
-
Jin, S. E., Jin, H. E., & Hong, S. S. (2014). Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics.
BioMed research international,
2014, 814208.
https://doi.org/10.1155/2014/814208
-
Fang, R. H., Hu, C. M., Luk, B. T., Gao, W., Copp, J. A., Tai, Y., O'Connor, D. E., & Zhang, L. (2014). Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery.
Nano letters,
14(4), 2181–2188.
https://doi.org/10.1021/nl500618u
-
Rastogi, V., Yadav, P., Bhattacharya, S. S., Mishra, A. K., Verma, N., Verma, A., & Pandit, J. K. (2014). Carbon nanotubes: an emerging drug carrier for targeting cancer cells.
Journal of drug delivery,
2014, 670815.
https://doi.org/10.1155/2014/670815
-
Makino, A., & Kimura, S. (2014). Solid tumor-targeting theranostic polymer nanoparticle in nuclear medicinal fields.
TheScientificWorldJournal,
2014, 424513.
https://doi.org/10.1155/2014/424513
-
Narayanan, K., Subrahmanyam, V. M., & Venkata Rao, J. (2014). A Fractional Factorial Design to Study the Effect of Process Variables on the Preparation of Hyaluronidase Loaded PLGA Nanoparticles.
Enzyme research,
2014, 162962.
https://doi.org/10.1155/2014/162962
-
Snipstad, S., Westrøm, S., Mørch, Y., Afadzi, M., Åslund, A. K., & de Lange Davies, C. (2014). Contact-mediated intracellular delivery of hydrophobic drugs from polymeric nanoparticles.
Cancer nanotechnology,
5(1), 8.
https://doi.org/10.1186/s12645-014-0008-4
-
McCall, R. L., & Sirianni, R. W. (2013). PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS.
Journal of visualized experiments : JoVE, (82), 51015.
https://doi.org/10.3791/51015
-
Anselmo, A. C., Gupta, V., Zern, B. J., Pan, D., Zakrewsky, M., Muzykantov, V., & Mitragotri, S. (2013). Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells.
ACS nano,
7(12), 11129–11137.
https://doi.org/10.1021/nn404853z
-
Valencia, P. M., Pridgen, E. M., Rhee, M., Langer, R., Farokhzad, O. C., & Karnik, R. (2013). Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy.
ACS nano,
7(12), 10671–10680.
https://doi.org/10.1021/nn403370e
-
Vuković, L., Madriaga, A., Kuzmis, A., Banerjee, A., Tang, A., Tao, K., Shah, N., Král, P., & Onyuksel, H. (2013). Solubilization of therapeutic agents in micellar nanomedicines.
Langmuir : the ACS journal of surfaces and colloids,
29(51), 15747–15754.
https://doi.org/10.1021/la403264w
-
-
Wu, C., Han, D., Chen, T., Peng, L., Zhu, G., You, M., Qiu, L., Sefah, K., Zhang, X., & Tan, W. (2013). Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy.
Journal of the American Chemical Society,
135(49), 18644–18650.
https://doi.org/10.1021/ja4094617
-
Lee, S. M., & Nguyen, S. T. (2013). Smart Nanoscale Drug Delivery Platforms from Stimuli-Responsive Polymers and Liposomes.
Macromolecules,
46(23), 9169–9180.
https://doi.org/10.1021/ma401529w
-
Cheng, Q., Blais, M. O., Harris, G. M., & Jabbarzadeh, E. (2013). PLGA-carbon nanotube conjugates for intercellular delivery of caspase-3 into osteosarcoma cells.
PloS one,
8(12), e81947.
https://doi.org/10.1371/journal.pone.0081947
-
Stapleton, S., Milosevic, M., Allen, C., Zheng, J., Dunne, M., Yeung, I., & Jaffray, D. A. (2013). A mathematical model of the enhanced permeability and retention effect for liposome transport in solid tumors.
PloS one,
8(12), e81157.
https://doi.org/10.1371/journal.pone.0081157
-
Rizzo, L. Y., Theek, B., Storm, G., Kiessling, F., & Lammers, T. (2013). Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications.
Current opinion in biotechnology,
24(6), 1159–1166.
https://doi.org/10.1016/j.copbio.2013.02.020
-
-
Gülçür, E., Thaqi, M., Khaja, F., Kuzmis, A., & Önyüksel, H. (2013). Curcumin in VIP-targeted sterically stabilized phospholipid nanomicelles: a novel therapeutic approach for breast cancer and breast cancer stem cells.
Drug delivery and translational research,
3(6), 10.1007/s13346-013-0167-6.
https://doi.org/10.1007/s13346-013-0167-6
-
Zhao, Y., van Rooy, I., Hak, S., Fay, F., Tang, J., Davies, C., Skobe, M., Fisher, E. A., Radu, A., Fayad, Z. A., de Mello Donegá, C., Meijerink, A., & Mulder, W. J. (2013). Near-infrared fluorescence energy transfer imaging of nanoparticle accumulation and dissociation kinetics in tumor-bearing mice.
ACS nano,
7(11), 10362–10370.
https://doi.org/10.1021/nn404782p
-
Zhang, L., & Zhao, D. (2013). Liposomal encapsulation enhances in vivo near infrared imaging of exposed phosphatidylserine in a mouse glioma model.
Molecules (Basel, Switzerland),
18(12), 14613–14628.
https://doi.org/10.3390/molecules181214613
-
Viger, M. L., Sheng, W., McFearin, C. L., Berezin, M. Y., & Almutairi, A. (2013). Application of time-resolved fluorescence for direct and continuous probing of release from polymeric delivery vehicles.
Journal of controlled release : official journal of the Controlled Release Society,
171(3), 308–314.
https://doi.org/10.1016/j.jconrel.2013.06.018
-
Zhu, G., Hu, R., Zhao, Z., Chen, Z., Zhang, X., & Tan, W. (2013). Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.
Journal of the American Chemical Society,
135(44), 16438–16445.
https://doi.org/10.1021/ja406115e
-
Wang, X., Peer, D., & Petersen, B. (2013). Molecular and Cellular Therapies: New challenges and opportunities.
Molecular and cellular therapies,
1, 1.
https://doi.org/10.1186/2052-8426-1-1
-
Johnstone, T. C., Wilson, J. J., & Lippard, S. J. (2013). Monofunctional and higher-valent platinum anticancer agents.
Inorganic chemistry,
52(21), 12234–12249.
https://doi.org/10.1021/ic400538c
-
Zou, P., Chen, H., Paholak, H. J., & Sun, D. (2013). Noninvasive fluorescence resonance energy transfer imaging of in vivo premature drug release from polymeric nanoparticles.
Molecular pharmaceutics,
10(11), 4185–4194.
https://doi.org/10.1021/mp4002393
-
Pan, D., Kim, B., Wang, L. V., & Lanza, G. M. (2013). A brief account of nanoparticle contrast agents for photoacoustic imaging.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology,
5(6), 517–543.
https://doi.org/10.1002/wnan.1231
-
Oberoi, H. S., Nukolova, N. V., Kabanov, A. V., & Bronich, T. K. (2013). Nanocarriers for delivery of platinum anticancer drugs.
Advanced drug delivery reviews,
65(13-14), 1667–1685.
https://doi.org/10.1016/j.addr.2013.09.014
-
Markman, J. L., Rekechenetskiy, A., Holler, E., & Ljubimova, J. Y. (2013). Nanomedicine therapeutic approaches to overcome cancer drug resistance.
Advanced drug delivery reviews,
65(13-14), 1866–1879.
https://doi.org/10.1016/j.addr.2013.09.019
-
-
-
-
-
Yasunaga, M., Furuta, M., Ogata, K., Koga, Y., Yamamoto, Y., Takigahira, M., & Matsumura, Y. (2013). The significance of microscopic mass spectrometry with high resolution in the visualisation of drug distribution.
Scientific reports,
3, 3050.
https://doi.org/10.1038/srep03050
-
Agarwal, R., Singh, V., Jurney, P., Shi, L., Sreenivasan, S. V., & Roy, K. (2013). Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms.
Proceedings of the National Academy of Sciences of the United States of America,
110(43), 17247–17252.
https://doi.org/10.1073/pnas.1305000110
-
Gianella, A., Mieszawska, A. J., Hoeben, F. J., Janssen, H. M., Jarzyna, P. A., Cormode, D. P., Costa, K. D., Rao, S., Farokhzad, O. C., Langer, R., Fayad, Z. A., & Mulder, W. J. (2013). Synthesis and in vitro evaluation of a multifunctional and surface-switchable nanoemulsion platform.
Chemical communications (Cambridge, England),
49(82), 9392–9394.
https://doi.org/10.1039/c3cc43618g
-
Xu, W., Burke, J. F., Pilla, S., Chen, H., Jaskula-Sztul, R., & Gong, S. (2013). Octreotide-functionalized and resveratrol-loaded unimolecular micelles for targeted neuroendocrine cancer therapy.
Nanoscale,
5(20), 9924–9933.
https://doi.org/10.1039/c3nr03102k
-
Xing, H., Tang, L., Yang, X., Hwang, K., Wang, W., Yin, Q., Wong, N. Y., Dobrucki, L. W., Yasui, N., Katzenellenbogen, J. A., Helferich, W. G., Cheng, J., & Lu, Y. (2013). Selective Delivery of an Anticancer Drug with Aptamer-Functionalized Liposomes to Breast Cancer Cells
in Vitro and
in Vivo.
Journal of materials chemistry. B,
1(39), 5288–5297.
https://doi.org/10.1039/C3TB20412J
-
Srinivasan, S., Alexander, J. F., Driessen, W. H., Leonard, F., Ye, H., Liu, X., Arap, W., Pasqualini, R., Ferrari, M., & Godin, B. (2013). Bacteriophage Associated Silicon Particles: Design and Characterization of a Novel Theranostic Vector with Improved Payload Carrying Potential.
Journal of materials chemistry. B,
1(39), 10.1039/C3TB20595A.
https://doi.org/10.1039/C3TB20595A
-
Guduru, R., Liang, P., Runowicz, C., Nair, M., Atluri, V., & Khizroev, S. (2013). Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells.
Scientific reports,
3, 2953.
https://doi.org/10.1038/srep02953
-
Liu, J., Gao, A. X., & Johnson, J. A. (2013). Particles without a box: brush-first synthesis of photodegradable PEG star polymers under ambient conditions.
Journal of visualized experiments : JoVE, (80), 50874.
https://doi.org/10.3791/50874
-
Fang, R. H., Hu, C. M., Chen, K. N., Luk, B. T., Carpenter, C. W., Gao, W., Li, S., Zhang, D. E., Lu, W., & Zhang, L. (2013). Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles.
Nanoscale,
5(19), 8884–8888.
https://doi.org/10.1039/c3nr03064d
-
Wang, C., Wu, C., Zhou, X., Han, T., Xin, X., Wu, J., Zhang, J., & Guo, S. (2013). Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots.
Scientific reports,
3, 2852.
https://doi.org/10.1038/srep02852
-
Dadgar, N., Alavi, S. E., Esfahani, M. K., & Akbarzadeh, A. (2013). Study of toxicity effect of pegylated nanoliposomal artemisinin on breast cancer cell line.
Indian journal of clinical biochemistry : IJCB,
28(4), 410–412.
https://doi.org/10.1007/s12291-013-0306-3
-
Mezzaroba, N., Zorzet, S., Secco, E., Biffi, S., Tripodo, C., Calvaruso, M., Mendoza-Maldonado, R., Capolla, S., Granzotto, M., Spretz, R., Larsen, G., Noriega, S., Lucafò, M., Mansilla, E., Garrovo, C., Marín, G. H., Baj, G., Gattei, V., Pozzato, G., Núñez, L., … Macor, P. (2013). New potential therapeutic approach for the treatment of B-Cell malignancies using chlorambucil/hydroxychloroquine-loaded anti-CD20 nanoparticles.
PloS one,
8(9), e74216.
https://doi.org/10.1371/journal.pone.0074216
-
Di Mascolo, D., J Lyon, C., Aryal, S., Ramirez, M. R., Wang, J., Candeloro, P., Guindani, M., Hsueh, W. A., & Decuzzi, P. (2013). Rosiglitazone-loaded nanospheres for modulating macrophage-specific inflammation in obesity.
Journal of controlled release : official journal of the Controlled Release Society,
170(3), 460–468.
https://doi.org/10.1016/j.jconrel.2013.06.012
-
Mieszawska, A. J., Kim, Y., Gianella, A., van Rooy, I., Priem, B., Labarre, M. P., Ozcan, C., Cormode, D. P., Petrov, A., Langer, R., Farokhzad, O. C., Fayad, Z. A., & Mulder, W. J. (2013). Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy.
Bioconjugate chemistry,
24(9), 1429–1434.
https://doi.org/10.1021/bc400166j
-
Morton, S. W., Herlihy, K. P., Shopsowitz, K. E., Deng, Z. J., Chu, K. S., Bowerman, C. J., Desimone, J. M., & Hammond, P. T. (2013). Scalable manufacture of built-to-order nanomedicine: spray-assisted layer-by-layer functionalization of PRINT nanoparticles.
Advanced materials (Deerfield Beach, Fla.),
25(34), 4707–4713.
https://doi.org/10.1002/adma.201302025
-
Khushnud, T., & Mousa, S. A. (2013). Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer.
Molecular biotechnology,
55(1), 78–86.
https://doi.org/10.1007/s12033-012-9623-7
-
Nair K, L., Jagadeeshan, S., Nair S, A., & Kumar, G. S. (2013). Folic acid conjugated δ-valerolactone-poly(ethylene glycol) based triblock copolymer as a promising carrier for targeted doxorubicin delivery.
PloS one,
8(8), e70697.
https://doi.org/10.1371/journal.pone.0070697
-
Frasconi, M., Liu, Z., Lei, J., Wu, Y., Strekalova, E., Malin, D., Ambrogio, M. W., Chen, X., Botros, Y. Y., Cryns, V. L., Sauvage, J. P., & Stoddart, J. F. (2013). Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles.
Journal of the American Chemical Society,
135(31), 11603–11613.
https://doi.org/10.1021/ja405058y
-
Gullotti, E., Park, J., & Yeo, Y. (2013). Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles.
Pharmaceutical research,
30(8), 1956–1967.
https://doi.org/10.1007/s11095-013-1039-y
-
Lee, H. J., & Bae, Y. (2013). Brushed block copolymer micelles with pH-sensitive pendant groups for controlled drug delivery.
Pharmaceutical research,
30(8), 2077–2086.
https://doi.org/10.1007/s11095-013-1060-1
-
Wojton, J., Chu, Z., Mathsyaraja, H., Meisen, W. H., Denton, N., Kwon, C. H., Chow, L. M., Palascak, M., Franco, R., Bourdeau, T., Thornton, S., Ostrowski, M. C., Kaur, B., & Qi, X. (2013). Systemic delivery of SapC-DOPS has antiangiogenic and antitumor effects against glioblastoma.
Molecular therapy : the journal of the American Society of Gene Therapy,
21(8), 1517–1525.
https://doi.org/10.1038/mt.2013.114
-
Kumar, R., Kulkarni, A., Nabulsi, J., Nagesha, D. K., Cormack, R., Makrigiorgos, M. G., & Sridhar, S. (2013). Facile Synthesis of PEGylated PLGA Nanoparticles Encapsulating Doxorubicin and its In Vitro Evaluation as Potent Drug Delivery Vehicle.
Drug delivery and translational research,
3(4), 299–308.
https://doi.org/10.1007/s13346-012-0124-9
-
-
Qaderi, A., Dadgar, N., Mansouri, H., Alavi, S. E., Esfahani, M. K., & Akbarzadeh, A. (2013). Modeling and prediction of cytotoxicity of artemisinin for treatment of the breast cancer by using artificial neural networks.
SpringerPlus,
2, 340.
https://doi.org/10.1186/2193-1801-2-340
-
Chien, M. P., Thompson, M. P., Barback, C. V., Ku, T. H., Hall, D. J., & Gianneschi, N. C. (2013). Enzyme-directed assembly of a nanoparticle probe in tumor tissue.
Advanced materials (Deerfield Beach, Fla.),
25(26), 3599–3604.
https://doi.org/10.1002/adma.201300823
-
Ta, T., & Porter, T. M. (2013). Thermosensitive liposomes for localized delivery and triggered release of chemotherapy.
Journal of controlled release : official journal of the Controlled Release Society,
169(1-2), 112–125.
https://doi.org/10.1016/j.jconrel.2013.03.036
-
Cabral, H., Murakami, M., Hojo, H., Terada, Y., Kano, M. R., Chung, U. I., Nishiyama, N., & Kataoka, K. (2013). Targeted therapy of spontaneous murine pancreatic tumors by polymeric micelles prolongs survival and prevents peritoneal metastasis.
Proceedings of the National Academy of Sciences of the United States of America,
110(28), 11397–11402.
https://doi.org/10.1073/pnas.1301348110
-
Amoozgar, Z., Park, J., Lin, Q., Weidle, J. H., 3rd, & Yeo, Y. (2013). Development of quinic acid-conjugated nanoparticles as a drug carrier to solid tumors.
Biomacromolecules,
14(7), 2389–2395.
https://doi.org/10.1021/bm400512g
-
Xu, W., Siddiqui, I. A., Nihal, M., Pilla, S., Rosenthal, K., Mukhtar, H., & Gong, S. (2013). Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer.
Biomaterials,
34(21), 5244–5253.
https://doi.org/10.1016/j.biomaterials.2013.03.006
-
McRae Page, S., Martorella, M., Parelkar, S., Kosif, I., & Emrick, T. (2013). Disulfide cross-linked phosphorylcholine micelles for triggered release of camptothecin.
Molecular pharmaceutics,
10(7), 2684–2692.
https://doi.org/10.1021/mp400114n
-
Alavi, S. E., Esfahani, M. K., Alavi, F., Movahedi, F., & Akbarzadeh, A. (2013). Drug delivery of hydroxyurea to breast cancer using liposomes.
Indian journal of clinical biochemistry : IJCB,
28(3), 299–302.
https://doi.org/10.1007/s12291-012-0291-y
-
Sanna, V., Siddiqui, I. A., Sechi, M., & Mukhtar, H. (2013). Nanoformulation of natural products for prevention and therapy of prostate cancer.
Cancer letters,
334(1), 142–151.
https://doi.org/10.1016/j.canlet.2012.11.037
-
Cui, F., Li, Y., Zhou, S., Jia, M., Yang, X., Yu, F., Ye, S., Hou, Z., & Xie, L. (2013). A comparative in vitro evaluation of self-assembled PTX-PLA and PTX-MPEG-PLA nanoparticles.
Nanoscale research letters,
8(1), 301.
https://doi.org/10.1186/1556-276X-8-301
-
Tsekouras, K., Goncharenko, I., Colvin, M. E., Huang, K. C., & Gopinathan, A. (2013). Design of High-Specificity Nanocarriers by Exploiting Non-Equilibrium Effects in Cancer Cell Targeting.
PloS one,
8(6), e65623.
https://doi.org/10.1371/journal.pone.0065623
-
O'Halloran, T. V., Ahn, R., Hankins, P., Swindell, E., & Mazar, A. P. (2013). The many spaces of uPAR: delivery of theranostic agents and nanobins to multiple tumor compartments through a single target.
Theranostics,
3(7), 496–506.
https://doi.org/10.7150/thno.4953
-
Lee, S. M., Tsai, D. H., Hackley, V. A., Brechbiel, M. W., & Cook, R. F. (2013). Surface-engineered nanomaterials as X-ray absorbing adjuvant agents for Auger-mediated chemo-radiation.
Nanoscale,
5(12), 5252–5256.
https://doi.org/10.1039/c3nr00333g
-
Zhang, Y., Yin, Q., Yin, L., Ma, L., Tang, L., & Cheng, J. (2013). Chain-shattering polymeric therapeutics with on-demand drug-release capability.
Angewandte Chemie (International ed. in English),
52(25), 6435–6439.
https://doi.org/10.1002/anie.201300497
-
Sunoqrot, S., Liu, Y., Kim, D. H., & Hong, S. (2013). In vitro evaluation of dendrimer-polymer hybrid nanoparticles on their controlled cellular targeting kinetics.
Molecular pharmaceutics,
10(6), 2157–2166.
https://doi.org/10.1021/mp300560n
-
Krishnan, V., Xu, X., Barwe, S. P., Yang, X., Czymmek, K., Waldman, S. A., Mason, R. W., Jia, X., & Rajasekaran, A. K. (2013). Dexamethasone-loaded block copolymer nanoparticles induce leukemia cell death and enhance therapeutic efficacy: a novel application in pediatric nanomedicine.
Molecular pharmaceutics,
10(6), 2199–2210.
https://doi.org/10.1021/mp300350e
-
Severino, P., Fangueiro, J. F., Ferreira, S. V., Basso, R., Chaud, M. V., Santana, M. H., Rosmaninho, A., & Souto, E. B. (2013). Nanoemulsions and nanoparticles for non-melanoma skin cancer: effects of lipid materials.
Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico,
15(6), 417–424.
https://doi.org/10.1007/s12094-012-0982-0
-
Rosso, F., Quagliariello, V., Tortora, C., Di Lazzaro, A., Barbarisi, A., & Iaffaioli, R. V. (2013). Cross-linked hyaluronic acid sub-micron particles: in vitro and in vivo biodistribution study in cancer xenograft model.
Journal of materials science. Materials in medicine,
24(6), 1473–1481.
https://doi.org/10.1007/s10856-013-4895-4
-
-
Grama, C. N., Venkatpurwar, V. P., Lamprou, D. A., & Ravi Kumar, M. N. (2013). Towards scale-up and regulatory shelf-stability testing of curcumin encapsulated polyester nanoparticles.
Drug delivery and translational research,
3(3), 286–293.
https://doi.org/10.1007/s13346-013-0150-2
-
Martinez, J. O., Parodi, A., Liu, X., Kolonin, M. G., Ferrari, M., & Tasciotti, E. (2013). Evaluation of cell function upon nanovector internalization.
Small (Weinheim an der Bergstrasse, Germany),
9(9-10), 1696–1702.
https://doi.org/10.1002/smll.201202001
-
Li, J., Kuang, Y., Shi, J., Gao, Y., Zhou, J., & Xu, B. (2013). The conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels.
Beilstein journal of organic chemistry,
9, 908–917.
https://doi.org/10.3762/bjoc.9.104
-
Florinas, S., Nam, H. Y., & Kim, S. W. (2013). Enhanced siRNA delivery using a combination of an arginine-grafted bioreducible polymer, ultrasound, and microbubbles in cancer cells.
Molecular pharmaceutics,
10(5), 2021–2030.
https://doi.org/10.1021/mp400048p
-
-
Valencia, P. M., Pridgen, E. M., Perea, B., Gadde, S., Sweeney, C., Kantoff, P. W., Bander, N. H., Lippard, S. J., Langer, R., Karnik, R., & Farokhzad, O. C. (2013). Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles.
Nanomedicine (London, England),
8(5), 687–698.
https://doi.org/10.2217/nnm.12.134
-
Chan, C. N., Dietrich, I., Hosie, M. J., & Willett, B. J. (2013). Recent developments in human immunodeficiency virus-1 latency research.
The Journal of general virology,
94(Pt 5), 917–932.
https://doi.org/10.1099/vir.0.049296-0
-
Colby, A. H., Colson, Y. L., & Grinstaff, M. W. (2013). Microscopy and tunable resistive pulse sensing characterization of the swelling of pH-responsive, polymeric expansile nanoparticles.
Nanoscale,
5(8), 3496–3504.
https://doi.org/10.1039/c3nr00114h
-
Hossain, S., Yamamoto, H., Chowdhury, E. H., Wu, X., Hirose, H., Haque, A., Doki, Y., Mori, M., & Akaike, T. (2013). Fabrication and intracellular delivery of doxorubicin/carbonate apatite nanocomposites: effect on growth retardation of established colon tumor.
PloS one,
8(4), e60428.
https://doi.org/10.1371/journal.pone.0060428
-
Joo, K. I., Xiao, L., Liu, S., Liu, Y., Lee, C. L., Conti, P. S., Wong, M. K., Li, Z., & Wang, P. (2013). Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs.
Biomaterials,
34(12), 3098–3109.
https://doi.org/10.1016/j.biomaterials.2013.01.039
-
Shi, S., Yang, K., Hong, H., Valdovinos, H. F., Nayak, T. R., Zhang, Y., Theuer, C. P., Barnhart, T. E., Liu, Z., & Cai, W. (2013). Tumor vasculature targeting and imaging in living mice with reduced graphene oxide.
Biomaterials,
34(12), 3002–3009.
https://doi.org/10.1016/j.biomaterials.2013.01.047
-
Singh, A. K., Pandey, A., Tewari, M., Kumar, R., Sharma, A., Pandey, H. P., & Shukla, H. S. (2013). Prospects of nano-material in breast cancer management.
Pathology oncology research : POR,
19(2), 155–165.
https://doi.org/10.1007/s12253-013-9609-1
-
-
Lin, C. H., Al-Suwayeh, S. A., Hung, C. F., Chen, C. C., & Fang, J. Y. (2013). Camptothecin-Loaded Liposomes with α-Melanocyte-Stimulating Hormone Enhance Cytotoxicity Toward and Cellular Uptake by Melanomas: An Application of Nanomedicine on Natural Product.
Journal of traditional and complementary medicine,
3(2), 102–109.
https://doi.org/10.4103/2225-4110.110423
-
Moore, T. L., Pitzer, J. E., Podila, R., Wang, X., Lewis, R. L., Grimes, S. W., Wilson, J. R., Skjervold, E., Brown, J. M., Rao, A., & Alexis, F. (2013). Multifunctional Polymer-Coated Carbon Nanotubes for Safe Drug Delivery.
Particle & particle systems characterization : measurement and description of particle properties and behavior in powders and other disperse systems,
30(4), 365–373.
https://doi.org/10.1002/ppsc.201200145
-
Panzarini, E., Inguscio, V., Tenuzzo, B. A., Carata, E., & Dini, L. (2013). Nanomaterials and autophagy: new insights in cancer treatment.
Cancers,
5(1), 296–319.
https://doi.org/10.3390/cancers5010296
-
Kim, S. T., Saha, K., Kim, C., & Rotello, V. M. (2013). The role of surface functionality in determining nanoparticle cytotoxicity.
Accounts of chemical research,
46(3), 681–691.
https://doi.org/10.1021/ar3000647
-
Yin, Q., Tong, R., Xu, Y., Baek, K., Dobrucki, L. W., Fan, T. M., & Cheng, J. (2013). Drug-initiated ring-opening polymerization of O-carboxyanhydrides for the preparation of anticancer drug-poly(O-carboxyanhydride) nanoconjugates.
Biomacromolecules,
14(3), 920–929.
https://doi.org/10.1021/bm301999c
-
Gormley, A. J., Larson, N., Banisadr, A., Robinson, R., Frazier, N., Ray, A., & Ghandehari, H. (2013). Plasmonic photothermal therapy increases the tumor mass penetration of HPMA copolymers.
Journal of controlled release : official journal of the Controlled Release Society,
166(2), 130–138.
https://doi.org/10.1016/j.jconrel.2012.12.007
-
Fan, Z., Senapati, D., Singh, A. K., & Ray, P. C. (2013). Theranostic magnetic core-plasmonic shell star shape nanoparticle for the isolation of targeted rare tumor cells from whole blood, fluorescence imaging, and photothermal destruction of cancer.
Molecular pharmaceutics,
10(3), 857–866.
https://doi.org/10.1021/mp300468q
-
Pusic, K., Aguilar, Z., McLoughlin, J., Kobuch, S., Xu, H., Tsang, M., Wang, A., & Hui, G. (2013). Iron oxide nanoparticles as a clinically acceptable delivery platform for a recombinant blood-stage human malaria vaccine.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
27(3), 1153–1166.
https://doi.org/10.1096/fj.12-218362
-
Hossain, S. S., Zhang, Y., Liang, X., Hussain, F., Ferrari, M., Hughes, T. J., & Decuzzi, P. (2013). In silico vascular modeling for personalized nanoparticle delivery.
Nanomedicine (London, England),
8(3), 343–357.
https://doi.org/10.2217/nnm.12.124
-
-
Gonzalez, L., Loza, R. J., Han, K. Y., Sunoqrot, S., Cunningham, C., Purta, P., Drake, J., Jain, S., Hong, S., & Chang, J. H. (2013). Nanotechnology in corneal neovascularization therapy--a review.
Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics,
29(2), 124–134.
https://doi.org/10.1089/jop.2012.0158
-
Auffinger, B., Morshed, R., Tobias, A., Cheng, Y., Ahmed, A. U., & Lesniak, M. S. (2013). Drug-loaded nanoparticle systems and adult stem cells: a potential marriage for the treatment of malignant glioma?.
Oncotarget,
4(3), 378–396.
https://doi.org/10.18632/oncotarget.937
-
Cheetham, A. G., Zhang, P., Lin, Y. A., Lock, L. L., & Cui, H. (2013). Supramolecular nanostructures formed by anticancer drug assembly.
Journal of the American Chemical Society,
135(8), 2907–2910.
https://doi.org/10.1021/ja3115983
-
Salvador-Morales, C., Valencia, P. M., Gao, W., Karnik, R., & Farokhzad, O. C. (2013). Spontaneous formation of heterogeneous patches on polymer-lipid core-shell particle surfaces during self-assembly.
Small (Weinheim an der Bergstrasse, Germany),
9(4), 511–517.
https://doi.org/10.1002/smll.201201499
-
Mashaghi, S., Jadidi, T., Koenderink, G., & Mashaghi, A. (2013). Lipid nanotechnology.
International journal of molecular sciences,
14(2), 4242–4282.
https://doi.org/10.3390/ijms14024242
-
Ayyaswamy, P. S., Muzykantov, V., Eckmann, D. M., & Radhakrishnan, R. (2013). Nanocarrier Hydrodynamics and Binding in Targeted Drug Delivery: Challenges in Numerical Modeling and Experimental Validation.
Journal of nanotechnology in engineering and medicine,
4(1), 101011–1010115.
https://doi.org/10.1115/1.4024004
-
Sano, K., Nakajima, T., Choyke, P. L., & Kobayashi, H. (2013). Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors.
ACS nano,
7(1), 717–724.
https://doi.org/10.1021/nn305011p
-
Pearson, R. M., Patra, N., Hsu, H. J., Uddin, S., Král, P., & Hong, S. (2013). Positively Charged Dendron Micelles Display Negligible Cellular Interactions.
ACS macro letters,
2(1), 77–81.
https://doi.org/10.1021/mz300533w
-
Yang, J., Srinivasan, A., Sun, Y., Mrazek, J., Shu, Z., Kickhoefer, V. A., & Rome, L. H. (2013). Vault nanoparticles engineered with the protein transduction domain, TAT48, enhances cellular uptake.
Integrative biology : quantitative biosciences from nano to macro,
5(1), 151–158.
https://doi.org/10.1039/c2ib20119d
-
Black, K. C., Yi, J., Rivera, J. G., Zelasko-Leon, D. C., & Messersmith, P. B. (2013). Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy.
Nanomedicine (London, England),
8(1), 17–28.
https://doi.org/10.2217/nnm.12.82
-
Koshkaryev, A., Sawant, R., Deshpande, M., & Torchilin, V. (2013). Immunoconjugates and long circulating systems: origins, current state of the art and future directions.
Advanced drug delivery reviews,
65(1), 24–35.
https://doi.org/10.1016/j.addr.2012.08.009
-
MacEwan, S. R., & Chilkoti, A. (2013). Harnessing the power of cell-penetrating peptides: activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology,
5(1), 31–48.
https://doi.org/10.1002/wnan.1197
-
Lee, S. Y., Kim, S., Tyler, J. Y., Park, K., & Cheng, J. X. (2013). Blood-stable, tumor-adaptable disulfide bonded mPEG-(Cys)4-PDLLA micelles for chemotherapy.
Biomaterials,
34(2), 552–561.
https://doi.org/10.1016/j.biomaterials.2012.09.065
-
Kaur, R., & Badea, I. (2013). Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems.
International journal of nanomedicine,
8, 203–220.
https://doi.org/10.2147/IJN.S37348
-
Shao, J., Griffin, R. J., Galanzha, E. I., Kim, J. W., Koonce, N., Webber, J., Mustafa, T., Biris, A. S., Nedosekin, D. A., & Zharov, V. P. (2013). Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics.
Scientific reports,
3, 1293.
https://doi.org/10.1038/srep01293
-
Sah, H., Thoma, L. A., Desu, H. R., Sah, E., & Wood, G. C. (2013). Concepts and practices used to develop functional PLGA-based nanoparticulate systems.
International journal of nanomedicine,
8, 747–765.
https://doi.org/10.2147/IJN.S40579
-
Frieboes, H. B., Wu, M., Lowengrub, J., Decuzzi, P., & Cristini, V. (2013). A computational model for predicting nanoparticle accumulation in tumor vasculature.
PloS one,
8(2), e56876.
https://doi.org/10.1371/journal.pone.0056876
-
Perche, F., & Torchilin, V. P. (2013). Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting.
Journal of drug delivery,
2013, 705265.
https://doi.org/10.1155/2013/705265
-
Yang, C., Wang, J., Chen, D., Chen, J., Xiong, F., Zhang, H., Zhang, Y., Gu, N., & Dou, J. (2013). Paclitaxel-Fe3O4 nanoparticles inhibit growth of CD138(-) CD34(-) tumor stem-like cells in multiple myeloma-bearing mice.
International journal of nanomedicine,
8, 1439–1449.
https://doi.org/10.2147/IJN.S38447
-
Shi, J., Wang, Z., Wang, L., Wang, H., Li, L., Yu, X., Zhang, J., Ma, R., & Zhang, Z. (2013). Photodynamic therapy of a 2-methoxyestradiol tumor-targeting drug delivery system mediated by Asn-Gly-Arg in breast cancer.
International journal of nanomedicine,
8, 1551–1562.
https://doi.org/10.2147/IJN.S40011
-
Bahmani, B., Lytle, C. Y., Walker, A. M., Gupta, S., Vullev, V. I., & Anvari, B. (2013). Effects of nanoencapsulation and PEGylation on biodistribution of indocyanine green in healthy mice: quantitative fluorescence imaging and analysis of organs.
International journal of nanomedicine,
8, 1609–1620.
https://doi.org/10.2147/IJN.S42511
-
-
Zhou, J., Shum, K. T., Burnett, J. C., & Rossi, J. J. (2013). Nanoparticle-Based Delivery of RNAi Therapeutics: Progress and Challenges.
Pharmaceuticals (Basel, Switzerland),
6(1), 85–107.
https://doi.org/10.3390/ph6010085
-
Liu, Y., Ji, M., Wong, M. K., Joo, K. I., & Wang, P. (2013). Enhanced therapeutic efficacy of iRGD-conjugated crosslinked multilayer liposomes for drug delivery.
BioMed research international,
2013, 378380.
https://doi.org/10.1155/2013/378380
-
Qin, L., Wang, M., Zhu, R., You, S., Zhou, P., & Wang, S. (2013). The in vitro sustained release profile and antitumor effect of etoposide-layered double hydroxide nanohybrids.
International journal of nanomedicine,
8, 2053–2064.
https://doi.org/10.2147/IJN.S43203
-
Bhosale, S. V., & Bhosale, S. V. (2013). Yoctowells as a simple model system for the encapsulation and controlled release of bioactive molecules.
Scientific reports,
3, 1982.
https://doi.org/10.1038/srep01982
-
Li, J. M., Wang, Y. Y., Zhang, W., Su, H., Ji, L. N., & Mao, Z. W. (2013). Low-weight polyethylenimine cross-linked 2-hydroxypopyl-β-cyclodextrin and folic acid as an efficient and nontoxic siRNA carrier for gene silencing and tumor inhibition by VEGF siRNA.
International journal of nanomedicine,
8, 2101–2117.
https://doi.org/10.2147/IJN.S42440
-
Lee, T. R., Choi, M., Kopacz, A. M., Yun, S. H., Liu, W. K., & Decuzzi, P. (2013). On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better.
Scientific reports,
3, 2079.
https://doi.org/10.1038/srep02079
-
Scherzinger-Laude, K., Schönherr, C., Lewrick, F., Süss, R., Francese, G., & Rössler, J. (2013). Treatment of neuroblastoma and rhabdomyosarcoma using RGD-modified liposomal formulations of patupilone (EPO906).
International journal of nanomedicine,
8, 2197–2211.
https://doi.org/10.2147/IJN.S44025
-
Shi, J., Ma, R., Wang, L., Zhang, J., Liu, R., Li, L., Liu, Y., Hou, L., Yu, X., Gao, J., & Zhang, Z. (2013). The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment.
International journal of nanomedicine,
8, 2361–2373.
https://doi.org/10.2147/IJN.S45407
-
Bahmani, B., Bacon, D., & Anvari, B. (2013). Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containing indocyanine green for near infrared imaging and therapeutic applications.
Scientific reports,
3, 2180.
https://doi.org/10.1038/srep02180
-
Jeyamohan, P., Hasumura, T., Nagaoka, Y., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2013). Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy.
International journal of nanomedicine,
8, 2653–2667.
https://doi.org/10.2147/IJN.S46054
-
Gu, L., Hall, D. J., Qin, Z., Anglin, E., Joo, J., Mooney, D. J., Howell, S. B., & Sailor, M. J. (2013). In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles.
Nature communications,
4, 2326.
https://doi.org/10.1038/ncomms3326
-
-
Yang, S., Chen, Y., Gu, K., Dash, A., Sayre, C. L., Davies, N. M., & Ho, E. A. (2013). Novel intravaginal nanomedicine for the targeted delivery of saquinavir to CD4+ immune cells.
International journal of nanomedicine,
8, 2847–2858.
https://doi.org/10.2147/IJN.S46958
-
Reshetov, V., Lassalle, H. P., François, A., Dumas, D., Hupont, S., Gräfe, S., Filipe, V., Jiskoot, W., Guillemin, F., Zorin, V., & Bezdetnaya, L. (2013). Photodynamic therapy with conventional and PEGylated liposomal formulations of mTHPC (temoporfin): comparison of treatment efficacy and distribution characteristics in vivo.
International journal of nanomedicine,
8, 3817–3831.
https://doi.org/10.2147/IJN.S51002
-
Ding, W., & Guo, L. (2013). Immobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery.
International journal of nanomedicine,
8, 4631–4639.
https://doi.org/10.2147/IJN.S51745
-
Valetti, S., Mura, S., Stella, B., & Couvreur, P. (2013). Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice.
Journal of nanobiotechnology,
11 Suppl 1(Suppl 1), S6.
https://doi.org/10.1186/1477-3155-11-S1-S6
-
Lock, L. L., LaComb, M., Schwarz, K., Cheetham, A. G., Lin, Y. A., Zhang, P., & Cui, H. (2013). Self-assembly of natural and synthetic drug amphiphiles into discrete supramolecular nanostructures.
Faraday discussions,
166, 285–301.
https://doi.org/10.1039/c3fd00099k
-
Podila, R., Chen, R., Ke, P. C., Brown, J. M., & Rao, A. M. (2012). Effects of surface functional groups on the formation of nanoparticle-protein corona.
Applied physics letters,
101(26), 263701.
https://doi.org/10.1063/1.4772509
-
Tang, L., Yang, X., Dobrucki, L. W., Chaudhury, I., Yin, Q., Yao, C., Lezmi, S., Helferich, W. G., Fan, T. M., & Cheng, J. (2012). Aptamer-functionalized, ultra-small, monodisperse silica nanoconjugates for targeted dual-modal imaging of lymph nodes with metastatic tumors.
Angewandte Chemie (International ed. in English),
51(51), 12721–12726.
https://doi.org/10.1002/anie.201205271
-
Ko, E., Kamkaew, A., & Burgess, K. (2012). Small Molecule Ligands For Active Targeting Of TrkC-expressing Tumor Cells.
ACS medicinal chemistry letters,
3(12), 1008–1012.
https://doi.org/10.1021/ml300227d
-
Chen, N. T., Cheng, S. H., Liu, C. P., Souris, J. S., Chen, C. T., Mou, C. Y., & Lo, L. W. (2012). Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling.
International journal of molecular sciences,
13(12), 16598–16623.
https://doi.org/10.3390/ijms131216598
-
Bickerton, S., Jiwpanich, S., & Thayumanavan, S. (2012). Interconnected roles of scaffold hydrophobicity, drug loading, and encapsulation stability in polymeric nanocarriers.
Molecular pharmaceutics,
9(12), 3569–3578.
https://doi.org/10.1021/mp3004226
-
Yang, R., Zhang, S., Kong, D., Gao, X., Zhao, Y., & Wang, Z. (2012). Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin.
Pharmaceutical research,
29(12), 3512–3525.
https://doi.org/10.1007/s11095-012-0848-8
-
-
-
Ramishetti, S., & Huang, L. (2012). Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy.
Therapeutic delivery,
3(12), 1429–1445.
https://doi.org/10.4155/tde.12.127
-
Tong, R., Gabrielson, N. P., Fan, T. M., & Cheng, J. (2012). Polymeric Nanomedicines Based on Poly(lactide) and Poly(lactide-co-glycolide).
Current opinion in solid state & materials science,
16(6), 323–332.
https://doi.org/10.1016/j.cossms.2013.01.001
-
Oliveira, M. F., Guimarães, P. P., Gomes, A. D., Suárez, D., & Sinisterra, R. D. (2012). Strategies to target tumors using nanodelivery systems based on biodegradable polymers, aspects of intellectual property, and market.
Journal of chemical biology,
6(1), 7–23.
https://doi.org/10.1007/s12154-012-0086-x
-
Xiao, Y., Jaskula-Sztul, R., Javadi, A., Xu, W., Eide, J., Dammalapati, A., Kunnimalaiyaan, M., Chen, H., & Gong, S. (2012). Co-delivery of doxorubicin and siRNA using octreotide-conjugated gold nanorods for targeted neuroendocrine cancer therapy.
Nanoscale,
4(22), 7185–7193.
https://doi.org/10.1039/c2nr31853a
-
Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R., & Tsourkas, A. (2012). Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities.
Science (New York, N.Y.),
338(6109), 903–910.
https://doi.org/10.1126/science.1226338
-
Wu, C. H., Cao, C., Kim, J. H., Hsu, C. H., Wanebo, H. J., Bowen, W. D., Xu, J., & Marshall, J. (2012). Trojan-horse nanotube on-command intracellular drug delivery.
Nano letters,
12(11), 5475–5480.
https://doi.org/10.1021/nl301865c
-
Kumar, M., Habel, J. E., Shen, Y. X., Meier, W. P., & Walz, T. (2012). High-density reconstitution of functional water channels into vesicular and planar block copolymer membranes.
Journal of the American Chemical Society,
134(45), 18631–18637.
https://doi.org/10.1021/ja304721r
-
Ryvolova, M., Chomoucka, J., Drbohlavova, J., Kopel, P., Babula, P., Hynek, D., Adam, V., Eckschlager, T., Hubalek, J., Stiborova, M., Kaiser, J., & Kizek, R. (2012). Modern micro and nanoparticle-based imaging techniques.
Sensors (Basel, Switzerland),
12(11), 14792–14820.
https://doi.org/10.3390/s121114792
-
Choi, K. Y., Saravanakumar, G., Park, J. H., & Park, K. (2012). Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer.
Colloids and surfaces. B, Biointerfaces,
99, 82–94.
https://doi.org/10.1016/j.colsurfb.2011.10.029
-
Zhu, R., Cheng, K. W., Mackenzie, G., Huang, L., Sun, Y., Xie, G., Vrankova, K., Constantinides, P. P., & Rigas, B. (2012). Phospho-sulindac (OXT-328) inhibits the growth of human lung cancer xenografts in mice: enhanced efficacy and mitochondria targeting by its formulation in solid lipid nanoparticles.
Pharmaceutical research,
29(11), 3090–3101.
https://doi.org/10.1007/s11095-012-0801-x
-
Dam, D. H., Culver, K. S., Sisco, P. N., & Odom, T. W. (2012). Shining light on nuclear-targeted therapy using gold nanostar constructs.
Therapeutic delivery,
3(11), 1263–1267.
https://doi.org/10.4155/tde.12.107
-
Godin, B., Chiappini, C., Srinivasan, S., Alexander, J. F., Yokoi, K., Ferrari, M., Decuzzi, P., & Liu, X. (2012). Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice.
Advanced functional materials,
22(20), 4225–4235.
https://doi.org/10.1002/adfm.201200869
-
Marrache, S., & Dhar, S. (2012). Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics.
Proceedings of the National Academy of Sciences of the United States of America,
109(40), 16288–16293.
https://doi.org/10.1073/pnas.1210096109
-
Tichauer, K. M., Samkoe, K. S., Sexton, K. J., Hextrum, S. K., Yang, H. H., Klubben, W. S., Gunn, J. R., Hasan, T., & Pogue, B. W. (2012). In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging.
Molecular imaging and biology,
14(5), 584–592.
https://doi.org/10.1007/s11307-011-0534-y
-
Zhang, X. Q., Xu, X., Bertrand, N., Pridgen, E., Swami, A., & Farokhzad, O. C. (2012). Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine.
Advanced drug delivery reviews,
64(13), 1363–1384.
https://doi.org/10.1016/j.addr.2012.08.005
-
-
Pattani, V. P., & Tunnell, J. W. (2012). Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types.
Lasers in surgery and medicine,
44(8), 675–684.
https://doi.org/10.1002/lsm.22072
-
Valencia, P. M., Farokhzad, O. C., Karnik, R., & Langer, R. (2012). Microfluidic technologies for accelerating the clinical translation of nanoparticles.
Nature nanotechnology,
7(10), 623–629.
https://doi.org/10.1038/nnano.2012.168
-
Toft, D. J., Moyer, T. J., Standley, S. M., Ruff, Y., Ugolkov, A., Stupp, S. I., & Cryns, V. L. (2012). Coassembled cytotoxic and pegylated peptide amphiphiles form filamentous nanostructures with potent antitumor activity in models of breast cancer.
ACS nano,
6(9), 7956–7965.
https://doi.org/10.1021/nn302503s
-
Varela, J. A., Bexiga, M. G., Åberg, C., Simpson, J. C., & Dawson, K. A. (2012). Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells.
Journal of nanobiotechnology,
10, 39.
https://doi.org/10.1186/1477-3155-10-39
-
Nanaware-Kharade, N., Gonzalez, G. A., 3rd, Lay, J. O., Jr, Hendrickson, H. P., & Peterson, E. C. (2012). Therapeutic anti-methamphetamine antibody fragment-nanoparticle conjugates: synthesis and in vitro characterization.
Bioconjugate chemistry,
23(9), 1864–1872.
https://doi.org/10.1021/bc300204n
-
Zhu, Z. J., Posati, T., Moyano, D. F., Tang, R., Yan, B., Vachet, R. W., & Rotello, V. M. (2012). The interplay of monolayer structure and serum protein interactions on the cellular uptake of gold nanoparticles.
Small (Weinheim an der Bergstrasse, Germany),
8(17), 2659–2663.
https://doi.org/10.1002/smll.201200794
-
Fang, C., Kievit, F. M., Veiseh, O., Stephen, Z. R., Wang, T., Lee, D., Ellenbogen, R. G., & Zhang, M. (2012). Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach.
Journal of controlled release : official journal of the Controlled Release Society,
162(1), 233–241.
https://doi.org/10.1016/j.jconrel.2012.06.028
-
Ren, D., Dalmau, M., Randall, A., Shindel, M. M., Baldi, P., & Wang, S. W. (2012). Biomimetic Design of Protein Nanomaterials for Hydrophobic Molecular Transport.
Advanced functional materials,
22(15), 3170–3180.
https://doi.org/10.1002/adfm.201200052
-
Gu, L., Ruff, L. E., Qin, Z., Corr, M., Hedrick, S. M., & Sailor, M. J. (2012). Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody.
Advanced materials (Deerfield Beach, Fla.),
24(29), 3981–3987.
https://doi.org/10.1002/adma.201200776
-
Adriani, G., de Tullio, M. D., Ferrari, M., Hussain, F., Pascazio, G., Liu, X., & Decuzzi, P. (2012). The preferential targeting of the diseased microvasculature by disk-like particles.
Biomaterials,
33(22), 5504–5513.
https://doi.org/10.1016/j.biomaterials.2012.04.027
-
Wang, Z., Liu, H., Yang, S. H., Wang, T., Liu, C., & Cao, Y. C. (2012). Nanoparticle-based artificial RNA silencing machinery for antiviral therapy.
Proceedings of the National Academy of Sciences of the United States of America,
109(31), 12387–12392.
https://doi.org/10.1073/pnas.1207766109
-
Loverde, S. M., Klein, M. L., & Discher, D. E. (2012). Nanoparticle shape improves delivery: rational coarse grain molecular dynamics (rCG-MD) of taxol in worm-like PEG-PCL micelles.
Advanced materials (Deerfield Beach, Fla.),
24(28), 3823–3830.
https://doi.org/10.1002/adma.201103192
-
Lukianova-Hleb, E. Y., Ren, X., Zasadzinski, J. A., Wu, X., & Lapotko, D. O. (2012). Plasmonic nanobubbles enhance efficacy and selectivity of chemotherapy against drug-resistant cancer cells.
Advanced materials (Deerfield Beach, Fla.),
24(28), 3831–3837.
https://doi.org/10.1002/adma.201103550
-
Sailor, M. J., & Park, J. H. (2012). Hybrid nanoparticles for detection and treatment of cancer.
Advanced materials (Deerfield Beach, Fla.),
24(28), 3779–3802.
https://doi.org/10.1002/adma.201200653
-
Mu, Q., Hondow, N. S., Krzemiński, L., Brown, A. P., Jeuken, L. J., & Routledge, M. N. (2012). Mechanism of cellular uptake of genotoxic silica nanoparticles.
Particle and fibre toxicology,
9, 29.
https://doi.org/10.1186/1743-8977-9-29
-
Yuan, H., Fales, A. M., & Vo-Dinh, T. (2012). TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance.
Journal of the American Chemical Society,
134(28), 11358–11361.
https://doi.org/10.1021/ja304180y
-
de Barros, A. B., Tsourkas, A., Saboury, B., Cardoso, V. N., & Alavi, A. (2012). Emerging role of radiolabeled nanoparticles as an effective diagnostic technique.
EJNMMI research,
2(1), 39.
https://doi.org/10.1186/2191-219X-2-39
-
Smith, B. R., Kempen, P., Bouley, D., Xu, A., Liu, Z., Melosh, N., Dai, H., Sinclair, R., & Gambhir, S. S. (2012). Shape matters: intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation.
Nano letters,
12(7), 3369–3377.
https://doi.org/10.1021/nl204175t
-
Wei, X., Wang, Y., Zeng, W., Huang, F., Qin, L., Zhang, C., & Liang, W. (2012). Stability influences the biodistribution, toxicity, and anti-tumor activity of doxorubicin encapsulated in PEG-PE micelles in mice.
Pharmaceutical research,
29(7), 1977–1989.
https://doi.org/10.1007/s11095-012-0725-5
-
Emoto, S., Yamaguchi, H., Kishikawa, J., Yamashita, H., Ishigami, H., & Kitayama, J. (2012). Antitumor effect and pharmacokinetics of intraperitoneal NK105, a nanomicellar paclitaxel formulation for peritoneal dissemination.
Cancer science,
103(7), 1304–1310.
https://doi.org/10.1111/j.1349-7006.2012.02274.x
-
-
Lukianova-Hleb, E. Y., Wagner, D. S., Brenner, M. K., & Lapotko, D. O. (2012). Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles.
Biomaterials,
33(21), 5441–5450.
https://doi.org/10.1016/j.biomaterials.2012.03.077
-
Nduom, E. K., Bouras, A., Kaluzova, M., & Hadjipanayis, C. G. (2012). Nanotechnology applications for glioblastoma.
Neurosurgery clinics of North America,
23(3), 439–449.
https://doi.org/10.1016/j.nec.2012.04.006
-
Babar, I. A., Cheng, C. J., Booth, C. J., Liang, X., Weidhaas, J. B., Saltzman, W. M., & Slack, F. J. (2012). Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma.
Proceedings of the National Academy of Sciences of the United States of America,
109(26), E1695–E1704.
https://doi.org/10.1073/pnas.1201516109
-
Macewan, S. R., & Chilkoti, A. (2012). Digital switching of local arginine density in a genetically encoded self-assembled polypeptide nanoparticle controls cellular uptake.
Nano letters,
12(6), 3322–3328.
https://doi.org/10.1021/nl301529p
-
Zhao, Y., Duan, S., Zeng, X., Liu, C., Davies, N. M., Li, B., & Forrest, M. L. (2012). Prodrug strategy for PSMA-targeted delivery of TGX-221 to prostate cancer cells.
Molecular pharmaceutics,
9(6), 1705–1716.
https://doi.org/10.1021/mp3000309
-
Lee, H., Lytton-Jean, A. K., Chen, Y., Love, K. T., Park, A. I., Karagiannis, E. D., Sehgal, A., Querbes, W., Zurenko, C. S., Jayaraman, M., Peng, C. G., Charisse, K., Borodovsky, A., Manoharan, M., Donahoe, J. S., Truelove, J., Nahrendorf, M., Langer, R., & Anderson, D. G. (2012). Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery.
Nature nanotechnology,
7(6), 389–393.
https://doi.org/10.1038/nnano.2012.73
-
Nie, T., Wong, C. C., Alston, N., Aro, P., Constantinides, P. P., & Rigas, B. (2012). Phospho-ibuprofen (MDC-917) incorporated in nanocarriers: anti-cancer activity in vitro and in vivo.
British journal of pharmacology,
166(3), 991–1001.
https://doi.org/10.1111/j.1476-5381.2011.01799.x
-
Chang, J., Paillard, A., Passirani, C., Morille, M., Benoit, J. P., Betbeder, D., & Garcion, E. (2012). Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells.
Pharmaceutical research,
29(6), 1495–1505.
https://doi.org/10.1007/s11095-011-0624-1
-
Gormley, A. J., Larson, N., Sadekar, S., Robinson, R., Ray, A., & Ghandehari, H. (2012). Guided Delivery of Polymer Therapeutics Using Plasmonic Photothermal Therapy.
Nano today,
7(3), 158–167.
https://doi.org/10.1016/j.nantod.2012.04.002
-
Radovic-Moreno, A. F., Lu, T. K., Puscasu, V. A., Yoon, C. J., Langer, R., & Farokhzad, O. C. (2012). Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics.
ACS nano,
6(5), 4279–4287.
https://doi.org/10.1021/nn3008383
-
Graf, N., Bielenberg, D. R., Kolishetti, N., Muus, C., Banyard, J., Farokhzad, O. C., & Lippard, S. J. (2012). α(V)β(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug.
ACS nano,
6(5), 4530–4539.
https://doi.org/10.1021/nn301148e
-
Hassouneh, W., Fischer, K., MacEwan, S. R., Branscheid, R., Fu, C. L., Liu, R., Schmidt, M., & Chilkoti, A. (2012). Unexpected multivalent display of proteins by temperature triggered self-assembly of elastin-like polypeptide block copolymers.
Biomacromolecules,
13(5), 1598–1605.
https://doi.org/10.1021/bm300321n
-
Ryu, J. H., Bickerton, S., Zhuang, J., & Thayumanavan, S. (2012). Ligand-decorated nanogels: fast one-pot synthesis and cellular targeting.
Biomacromolecules,
13(5), 1515–1522.
https://doi.org/10.1021/bm300201x
-
McDaniel, J. R., Macewan, S. R., Dewhirst, M., & Chilkoti, A. (2012). Doxorubicin-conjugated chimeric polypeptide nanoparticles that respond to mild hyperthermia.
Journal of controlled release : official journal of the Controlled Release Society,
159(3), 362–367.
https://doi.org/10.1016/j.jconrel.2012.02.030
-
Mérian, J., Gravier, J., Navarro, F., & Texier, I. (2012). Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation.
Molecules (Basel, Switzerland),
17(5), 5564–5591.
https://doi.org/10.3390/molecules17055564
-
de Faria, T. J., Roman, M., de Souza, N. M., De Vecchi, R., de Assis, J. V., dos Santos, A. L., Bechtold, I. H., Winter, N., Soares, M. J., Silva, L. P., De Almeida, M. V., & Báfica, A. (2012). An isoniazid analogue promotes Mycobacterium tuberculosis-nanoparticle interactions and enhances bacterial killing by macrophages.
Antimicrobial agents and chemotherapy,
56(5), 2259–2267.
https://doi.org/10.1128/AAC.05993-11
-
González-Toro, D. C., Ryu, J. H., Chacko, R. T., Zhuang, J., & Thayumanavan, S. (2012). Concurrent binding and delivery of proteins and lipophilic small molecules using polymeric nanogels.
Journal of the American Chemical Society,
134(16), 6964–6967.
https://doi.org/10.1021/ja3019143
-
Zhu, L., Kate, P., & Torchilin, V. P. (2012). Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting.
ACS nano,
6(4), 3491–3498.
https://doi.org/10.1021/nn300524f
-
Sunoqrot, S., Bae, J. W., Pearson, R. M., Shyu, K., Liu, Y., Kim, D. H., & Hong, S. (2012). Temporal control over cellular targeting through hybridization of folate-targeted dendrimers and PEG-PLA nanoparticles.
Biomacromolecules,
13(4), 1223–1230.
https://doi.org/10.1021/bm300316n
-
Chauhan, V. P., Stylianopoulos, T., Martin, J. D., Popović, Z., Chen, O., Kamoun, W. S., Bawendi, M. G., Fukumura, D., & Jain, R. K. (2012). Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner.
Nature nanotechnology,
7(6), 383–388.
https://doi.org/10.1038/nnano.2012.45
-
Mout, R., Moyano, D. F., Rana, S., & Rotello, V. M. (2012). Surface functionalization of nanoparticles for nanomedicine.
Chemical Society reviews,
41(7), 2539–2544.
https://doi.org/10.1039/c2cs15294k
-
Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F., & Farokhzad, O. C. (2012). Targeted polymeric therapeutic nanoparticles: design, development and clinical translation.
Chemical Society reviews,
41(7), 2971–3010.
https://doi.org/10.1039/c2cs15344k
-
Xiao, Y., Hong, H., Javadi, A., Engle, J. W., Xu, W., Yang, Y., Zhang, Y., Barnhart, T. E., Cai, W., & Gong, S. (2012). Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging.
Biomaterials,
33(11), 3071–3082.
https://doi.org/10.1016/j.biomaterials.2011.12.030
-
Dreaden, E. C., Austin, L. A., Mackey, M. A., & El-Sayed, M. A. (2012). Size matters: gold nanoparticles in targeted cancer drug delivery.
Therapeutic delivery,
3(4), 457–478.
https://doi.org/10.4155/tde.12.21
-
Ashley, C. E., Carnes, E. C., Epler, K. E., Padilla, D. P., Phillips, G. K., Castillo, R. E., Wilkinson, D. C., Wilkinson, B. S., Burgard, C. A., Kalinich, R. M., Townson, J. L., Chackerian, B., Willman, C. L., Peabody, D. S., Wharton, W., & Brinker, C. J. (2012). Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers.
ACS nano,
6(3), 2174–2188.
https://doi.org/10.1021/nn204102q
-
Sano, D., Berlin, J. M., Pham, T. T., Marcano, D. C., Valdecanas, D. R., Zhou, G., Milas, L., Myers, J. N., & Tour, J. M. (2012). Noncovalent assembly of targeted carbon nanovectors enables synergistic drug and radiation cancer therapy in vivo.
ACS nano,
6(3), 2497–2505.
https://doi.org/10.1021/nn204885f
-
Tong, R., & Cheng, J. (2012). Drug-Initiated, Controlled Ring-Opening Polymerization for the Synthesis of Polymer-Drug Conjugates.
Macromolecules,
45(5), 2225–2232.
https://doi.org/10.1021/ma202581d
-
Zheng, X., Zhou, F., Wu, B., Chen, W. R., & Xing, D. (2012). Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection.
Molecular pharmaceutics,
9(3), 514–522.
https://doi.org/10.1021/mp200526m
-
Zhang, N., & Palmer, A. F. (2012). Liposomes surface conjugated with human hemoglobin target delivery to macrophages.
Biotechnology and bioengineering,
109(3), 823–829.
https://doi.org/10.1002/bit.24340
-
-
Amoozgar, Z., & Yeo, Y. (2012). Recent advances in stealth coating of nanoparticle drug delivery systems.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology,
4(2), 219–233.
https://doi.org/10.1002/wnan.1157
-
Rayahin, J. E., Buhrman, J. S., & Gemeinhart, R. A. (2012). Hybrid nanocrystals: University of Kentucky US20060280680A1.
Expert opinion on therapeutic patents,
22(3), 341–348.
https://doi.org/10.1517/13543776.2012.665877
-
Della Rocca, J., Liu, D., & Lin, W. (2012). Are high drug loading nanoparticles the next step forward for chemotherapy?.
Nanomedicine (London, England),
7(3), 303–305.
https://doi.org/10.2217/nnm.11.191
-
Wankhede, M., Bouras, A., Kaluzova, M., & Hadjipanayis, C. G. (2012). Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy.
Expert review of clinical pharmacology,
5(2), 173–186.
https://doi.org/10.1586/ecp.12.1
-
-
van de Ven, A. L., Kim, P., Haley, O., Fakhoury, J. R., Adriani, G., Schmulen, J., Moloney, P., Hussain, F., Ferrari, M., Liu, X., Yun, S. H., & Decuzzi, P. (2012). Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution.
Journal of controlled release : official journal of the Controlled Release Society,
158(1), 148–155.
https://doi.org/10.1016/j.jconrel.2011.10.021
-
Fan, Z., Shelton, M., Singh, A. K., Senapati, D., Khan, S. A., & Ray, P. C. (2012). Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells.
ACS nano,
6(2), 1065–1073.
https://doi.org/10.1021/nn2045246
-
Yurt, A., Daaboul, G. G., Connor, J. H., Goldberg, B. B., & Ünlü, M. S. (2012). Single nanoparticle detectors for biological applications.
Nanoscale,
4(3), 715–726.
https://doi.org/10.1039/c2nr11562j
-
York, A. W., Zablocki, K. R., Lewis, D. R., Gu, L., Uhrich, K. E., Prud'homme, R. K., & Moghe, P. V. (2012). Kinetically assembled nanoparticles of bioactive macromolecules exhibit enhanced stability and cell-targeted biological efficacy.
Advanced materials (Deerfield Beach, Fla.),
24(6), 733–739.
https://doi.org/10.1002/adma.201103348
-
-
Chen, K. J., Tang, L., Garcia, M. A., Wang, H., Lu, H., Lin, W. Y., Hou, S., Yin, Q., Shen, C. K., Cheng, J., & Tseng, H. R. (2012). The therapeutic efficacy of camptothecin-encapsulated supramolecular nanoparticles.
Biomaterials,
33(4), 1162–1169.
https://doi.org/10.1016/j.biomaterials.2011.10.044
-
Mitra, R. N., Doshi, M., Zhang, X., Tyus, J. C., Bengtsson, N., Fletcher, S., Page, B. D., Turkson, J., Gesquiere, A. J., Gunning, P. T., Walter, G. A., & Santra, S. (2012). An activatable multimodal/multifunctional nanoprobe for direct imaging of intracellular drug delivery.
Biomaterials,
33(5), 1500–1508.
https://doi.org/10.1016/j.biomaterials.2011.10.068
-
Lukianova-Hleb, E. Y., Belyanin, A., Kashinath, S., Wu, X., & Lapotko, D. O. (2012). Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells.
Biomaterials,
33(6), 1821–1826.
https://doi.org/10.1016/j.biomaterials.2011.11.015
-
Rajasekhar Reddy, R., Raghupathi, K. R., Torres, D. A., & Thayumanavan, S. (2012). Stimuli Sensitive Amphiphilic Dendrimers.
New journal of chemistry = Nouveau journal de chimie,
36(2), 340–349.
https://doi.org/10.1039/C2NJ20879B
-
Xia, X., Yang, M., Wang, Y., Zheng, Y., Li, Q., Chen, J., & Xia, Y. (2012). Quantifying the coverage density of poly(ethylene glycol) chains on the surface of gold nanostructures.
ACS nano,
6(1), 512–522.
https://doi.org/10.1021/nn2038516
-
Choi, K. Y., Liu, G., Lee, S., & Chen, X. (2012). Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives.
Nanoscale,
4(2), 330–342.
https://doi.org/10.1039/c1nr11277e
-
Samarajeewa, S., Shrestha, R., Li, Y., & Wooley, K. L. (2012). Degradability of poly(lactic acid)-containing nanoparticles: enzymatic access through a cross-linked shell barrier.
Journal of the American Chemical Society,
134(2), 1235–1242.
https://doi.org/10.1021/ja2095602
-
Ghosh, K., Kanapathipillai, M., Korin, N., McCarthy, J. R., & Ingber, D. E. (2012). Polymeric nanomaterials for islet targeting and immunotherapeutic delivery.
Nano letters,
12(1), 203–208.
https://doi.org/10.1021/nl203334c
-
Agasti, S. S., Liong, M., Tassa, C., Chung, H. J., Shaw, S. Y., Lee, H., & Weissleder, R. (2012). Supramolecular host-guest interaction for labeling and detection of cellular biomarkers.
Angewandte Chemie (International ed. in English),
51(2), 450–454.
https://doi.org/10.1002/anie.201105670
-
Yesilyurt, V., Ramireddy, R., Azagarsamy, M. A., & Thayumanavan, S. (2012). Accessing lipophilic ligands in dendrimer-based amphiphilic supramolecular assemblies for protein-induced disassembly.
Chemistry (Weinheim an der Bergstrasse, Germany),
18(1), 223–229.
https://doi.org/10.1002/chem.201102727
-
Li, Y., Wang, J., Wientjes, M. G., & Au, J. L. (2012). Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor.
Advanced drug delivery reviews,
64(1), 29–39.
https://doi.org/10.1016/j.addr.2011.04.006
-
Sargsyan, S. A., Serkova, N. J., Renner, B., Hasebroock, K. M., Larsen, B., Stoldt, C., McFann, K., Pickering, M. C., & Thurman, J. M. (2012). Detection of glomerular complement C3 fragments by magnetic resonance imaging in murine lupus nephritis.
Kidney international,
81(2), 152–159.
https://doi.org/10.1038/ki.2011.332
-
-
Yu, M. K., Park, J., & Jon, S. (2012). Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy.
Theranostics,
2(1), 3–44.
https://doi.org/10.7150/thno.3463
-
Li, M., Kim, H. S., Tian, L., Yu, M. K., Jon, S., & Moon, W. K. (2012). Comparison of Two Ultrasmall Superparamagnetic Iron Oxides on Cytotoxicity and MR Imaging of Tumors.
Theranostics,
2(1), 76–85.
https://doi.org/10.7150/thno.3462
-
Monteagudo, E., Gándola, Y., González, L., Bregni, C., & Carlucci, A. M. (2012). Development, characterization, and in vitro evaluation of tamoxifen microemulsions.
Journal of drug delivery,
2012, 236713.
https://doi.org/10.1155/2012/236713
-
Capretto, L., Mazzitelli, S., Brognara, E., Lampronti, I., Carugo, D., Hill, M., Zhang, X., Gambari, R., & Nastruzzi, C. (2012). Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia.
International journal of nanomedicine,
7, 307–324.
https://doi.org/10.2147/IJN.S25657
-
Siddiqui, I. A., Adhami, V. M., Chamcheu, J. C., & Mukhtar, H. (2012). Impact of nanotechnology in cancer: emphasis on nanochemoprevention.
International journal of nanomedicine,
7, 591–605.
https://doi.org/10.2147/IJN.S26026
-
Sánchez-Moreno, P., Ortega-Vinuesa, J. L., Martín-Rodríguez, A., Boulaiz, H., Marchal-Corrales, J. A., & Peula-García, J. M. (2012). Characterization of different functionalized lipidic nanocapsules as potential drug carriers.
International journal of molecular sciences,
13(2), 2405–2424.
https://doi.org/10.3390/ijms13022405
-
Xu, W., Luo, T., Li, P., Zhou, C., Cui, D., Pang, B., Ren, Q., & Fu, S. (2012). RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating α(v)β₃ expression.
International journal of nanomedicine,
7, 915–924.
https://doi.org/10.2147/IJN.S28314
-
Lukianova-Hleb, E. Y., Ren, X., Constantinou, P. E., Danysh, B. P., Shenefelt, D. L., Carson, D. D., Farach-Carson, M. C., Kulchitsky, V. A., Wu, X., Wagner, D. S., & Lapotko, D. O. (2012). Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems.
PloS one,
7(4), e34537.
https://doi.org/10.1371/journal.pone.0034537 (Retraction published PLoS One. 2017 Nov 2;12 (11):e0187820)
-
Sánchez-Moreno, P., Boulaiz, H., Ortega-Vinuesa, J. L., Peula-García, J. M., & Aránega, A. (2012). Novel drug delivery system based on docetaxel-loaded nanocapsules as a therapeutic strategy against breast cancer cells.
International journal of molecular sciences,
13(4), 4906–4919.
https://doi.org/10.3390/ijms13044906
-
-
Woo, H. N., Chung, H. K., Ju, E. J., Jung, J., Kang, H. W., Lee, S. W., Seo, M. H., Lee, J. S., Lee, J. S., Park, H. J., Song, S. Y., Jeong, S. Y., & Choi, E. K. (2012). Preclinical evaluation of injectable sirolimus formulated with polymeric nanoparticle for cancer therapy.
International journal of nanomedicine,
7, 2197–2208.
https://doi.org/10.2147/IJN.S29480
-
Ren, Y., Zhang, H., Chen, B., Cheng, J., Cai, X., Liu, R., Xia, G., Wu, W., Wang, S., Ding, J., Gao, C., Wang, J., Bao, W., Wang, L., Tian, L., Song, H., & Wang, X. (2012). Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance.
International journal of nanomedicine,
7, 2261–2269.
https://doi.org/10.2147/IJN.S29357
-
Wang, B. L., Gao, X., Men, K., Qiu, J., Yang, B., Gou, M. L., Huang, M. J., Huang, N., Qian, Z. Y., Zhao, X., & Wei, Y. Q. (2012). Treating acute cystitis with biodegradable micelle-encapsulated quercetin.
International journal of nanomedicine,
7, 2239–2247.
https://doi.org/10.2147/IJN.S29416
-
Yoshida, M., Takimoto, R., Murase, K., Sato, Y., Hirakawa, M., Tamura, F., Sato, T., Iyama, S., Osuga, T., Miyanishi, K., Takada, K., Hayashi, T., Kobune, M., & Kato, J. (2012). Targeting anticancer drug delivery to pancreatic cancer cells using a fucose-bound nanoparticle approach.
PloS one,
7(7), e39545.
https://doi.org/10.1371/journal.pone.0039545
-
Luo, H., Jiang, B., Li, B., Li, Z., Jiang, B. H., & Chen, Y. C. (2012). Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability.
International journal of nanomedicine,
7, 3951–3959.
https://doi.org/10.2147/IJN.S33670
-
Fang, L., Chen, B., Liu, S., Wang, R., Hu, S., Xia, G., Tian, Y., & Cai, X. (2012). Synergistic effect of a combination of nanoparticulate Fe3O4 and gambogic acid on phosphatidylinositol 3-kinase/Akt/Bad pathway of LOVO cells.
International journal of nanomedicine,
7, 4109–4118.
https://doi.org/10.2147/IJN.S32475
-
Miele, E., Spinelli, G. P., Miele, E., Di Fabrizio, E., Ferretti, E., Tomao, S., & Gulino, A. (2012). Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy.
International journal of nanomedicine,
7, 3637–3657.
https://doi.org/10.2147/IJN.S23696
-
Park, S. J., & Khang, D. (2012). Conformational changes of fibrinogen in dispersed carbon nanotubes.
International journal of nanomedicine,
7, 4325–4333.
https://doi.org/10.2147/IJN.S33696
-
Xiao, Y., Hong, H., Matson, V. Z., Javadi, A., Xu, W., Yang, Y., Zhang, Y., Engle, J. W., Nickles, R. J., Cai, W., Steeber, D. A., & Gong, S. (2012). Gold Nanorods Conjugated with Doxorubicin and cRGD for Combined Anticancer Drug Delivery and PET Imaging.
Theranostics,
2(8), 757–768.
https://doi.org/10.7150/thno.4756
-
Cheng, M., He, B., Wan, T., Zhu, W., Han, J., Zha, B., Chen, H., Yang, F., Li, Q., Wang, W., Xu, H., & Ye, T. (2012). 5-Fluorouracil nanoparticles inhibit hepatocellular carcinoma via activation of the p53 pathway in the orthotopic transplant mouse model.
PloS one,
7(10), e47115.
https://doi.org/10.1371/journal.pone.0047115
-
-
Josefsen, L. B., & Boyle, R. W. (2012). Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics.
Theranostics,
2(9), 916–966.
https://doi.org/10.7150/thno.4571
-
Yang, H., Sun, C., Fan, Z., Tian, X., Yan, L., Du, L., Liu, Y., Chen, C., Liang, X. J., Anderson, G. J., Keelan, J. A., Zhao, Y., & Nie, G. (2012). Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy.
Scientific reports,
2, 847.
https://doi.org/10.1038/srep00847
-
Patil, R., Portilla-Arias, J., Ding, H., Konda, B., Rekechenetskiy, A., Inoue, S., Black, K. L., Holler, E., & Ljubimova, J. Y. (2012). Cellular delivery of doxorubicin via pH-controlled hydrazone linkage using multifunctional nano vehicle based on poly(β-l-malic acid).
International journal of molecular sciences,
13(9), 11681–11693.
https://doi.org/10.3390/ijms130911681
-
Lukianova-Hleb, E. Y., Ren, X., Townley, D., Wu, X., Kupferman, M. E., & Lapotko, D. O. (2012). Plasmonic nanobubbles rapidly detect and destroy drug-resistant tumors.
Theranostics,
2(10), 976–987.
https://doi.org/10.7150/thno.5116
-
Qian, W. Y., Sun, D. M., Zhu, R. R., Du, X. L., Liu, H., & Wang, S. L. (2012). pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release.
International journal of nanomedicine,
7, 5781–5792.
https://doi.org/10.2147/IJN.S34773
-
Zwicke, G. L., Mansoori, G. A., & Jeffery, C. J. (2012). Utilizing the folate receptor for active targeting of cancer nanotherapeutics.
Nano reviews,
3, 10.3402/nano.v3i0.18496.
https://doi.org/10.3402/nano.v3i0.18496
-
Luk, B. T., Fang, R. H., & Zhang, L. (2012). Lipid- and polymer-based nanostructures for cancer theranostics.
Theranostics,
2(12), 1117–1126.
https://doi.org/10.7150/thno.4381
-
Xu, C., Mu, L., Roes, I., Miranda-Nieves, D., Nahrendorf, M., Ankrum, J. A., Zhao, W., & Karp, J. M. (2011). Nanoparticle-based monitoring of cell therapy.
Nanotechnology,
22(49), 494001.
https://doi.org/10.1088/0957-4484/22/49/494001
-
Myung, J. H., Gajjar, K. A., Saric, J., Eddington, D. T., & Hong, S. (2011). Dendrimer-mediated multivalent binding for the enhanced capture of tumor cells.
Angewandte Chemie (International ed. in English),
50(49), 11769–11772.
https://doi.org/10.1002/anie.201105508
-
Kudgus, R. A., Bhattacharya, R., & Mukherjee, P. (2011). Cancer nanotechnology: emerging role of gold nanoconjugates.
Anti-cancer agents in medicinal chemistry,
11(10), 965–973.
https://doi.org/10.2174/187152011797927652
-
Blanco, E., Hsiao, A., Ruiz-Esparza, G. U., Landry, M. G., Meric-Bernstam, F., & Ferrari, M. (2011). Molecular-targeted nanotherapies in cancer: enabling treatment specificity.
Molecular oncology,
5(6), 492–503.
https://doi.org/10.1016/j.molonc.2011.10.005
-
Chauhan, V. P., Popović, Z., Chen, O., Cui, J., Fukumura, D., Bawendi, M. G., & Jain, R. K. (2011). Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration.
Angewandte Chemie (International ed. in English),
50(48), 11417–11420.
https://doi.org/10.1002/anie.201104449
-
Hahn, M. E., & Gianneschi, N. C. (2011). Enzyme-directed assembly and manipulation of organic nanomaterials.
Chemical communications (Cambridge, England),
47(43), 11814–11821.
https://doi.org/10.1039/c1cc15220c
-
Mullen, D. G., & Banaszak Holl, M. M. (2011). Heterogeneous ligand-nanoparticle distributions: a major obstacle to scientific understanding and commercial translation.
Accounts of chemical research,
44(11), 1135–1145.
https://doi.org/10.1021/ar1001389
-
Santra, S., & Perez, J. M. (2011). Selective N-alkylation of β-alanine facilitates the synthesis of a poly(amino acid)-based theranostic nanoagent.
Biomacromolecules,
12(11), 3917–3927.
https://doi.org/10.1021/bm2009334
-
Pusic, K., Xu, H., Stridiron, A., Aguilar, Z., Wang, A., & Hui, G. (2011). Blood stage merozoite surface protein conjugated to nanoparticles induce potent parasite inhibitory antibodies.
Vaccine,
29(48), 8898–8908.
https://doi.org/10.1016/j.vaccine.2011.09.070
-
Rodríguez, J. A., Luria-Pérez, R., López-Valdés, H. E., Casero, D., Daniels, T. R., Patel, S., Avila, D., Leuchter, R., So, S., Ortiz-Sánchez, E., Bonavida, B., Martínez-Maza, O., Charles, A. C., Pellegrini, M., Helguera, G., & Penichet, M. L. (2011). Lethal iron deprivation induced by non-neutralizing antibodies targeting transferrin receptor 1 in malignant B cells.
Leukemia & lymphoma,
52(11), 2169–2178.
https://doi.org/10.3109/10428194.2011.596964
-
Della Rocca, J., Huxford, R. C., Comstock-Duggan, E., & Lin, W. (2011). Polysilsesquioxane nanoparticles for targeted platin-based cancer chemotherapy by triggered release.
Angewandte Chemie (International ed. in English),
50(44), 10330–10334.
https://doi.org/10.1002/anie.201104510
-
Lobatto, M. E., Fuster, V., Fayad, Z. A., & Mulder, W. J. (2011). Perspectives and opportunities for nanomedicine in the management of atherosclerosis.
Nature reviews. Drug discovery,
10(11), 835–852.
https://doi.org/10.1038/nrd3578
-
Webber, M. J., Newcomb, C. J., Bitton, R., & Stupp, S. I. (2011). Switching of Self-Assembly in a Peptide Nanostructure with a Specific Enzyme.
Soft matter,
7(20), 9665–9672.
https://doi.org/10.1039/c1sm05610g
-
Bardhan, R., Lal, S., Joshi, A., & Halas, N. J. (2011). Theranostic nanoshells: from probe design to imaging and treatment of cancer.
Accounts of chemical research,
44(10), 936–946.
https://doi.org/10.1021/ar200023x
-
Della Rocca, J., Liu, D., & Lin, W. (2011). Nanoscale metal-organic frameworks for biomedical imaging and drug delivery.
Accounts of chemical research,
44(10), 957–968.
https://doi.org/10.1021/ar200028a
-
Perry, J. L., Herlihy, K. P., Napier, M. E., & Desimone, J. M. (2011). PRINT: a novel platform toward shape and size specific nanoparticle theranostics.
Accounts of chemical research,
44(10), 990–998.
https://doi.org/10.1021/ar2000315
-
Lee, V. Y., Havenstrite, K., Tjio, M., McNeil, M., Blau, H. M., Miller, R. D., & Sly, J. (2011). Nanogel star polymer architectures: a nanoparticle platform for modular programmable macromolecular self-assembly, intercellular transport, and dual-mode cargo delivery.
Advanced materials (Deerfield Beach, Fla.),
23(39), 4509–4515.
https://doi.org/10.1002/adma.201102371
-
Dvir, T., Bauer, M., Schroeder, A., Tsui, J. H., Anderson, D. G., Langer, R., Liao, R., & Kohane, D. S. (2011). Nanoparticles targeting the infarcted heart.
Nano letters,
11(10), 4411–4414.
https://doi.org/10.1021/nl2025882
-
Raghupathi, K. R., Azagarsamy, M. A., & Thayumanavan, S. (2011). Guest-release control in enzyme-sensitive, amphiphilic-dendrimer-based nanoparticles through photochemical crosslinking.
Chemistry (Weinheim an der Bergstrasse, Germany),
17(42), 11752–11760.
https://doi.org/10.1002/chem.201101066
-
Wang, T., Kulkarni, N., D'Souza, G. G., Petrenko, V. A., & Torchilin, V. P. (2011). On the mechanism of targeting of phage fusion protein-modified nanocarriers: only the binding peptide sequence matters.
Molecular pharmaceutics,
8(5), 1720–1728.
https://doi.org/10.1021/mp200080h
-
-
Kievit, F. M., & Zhang, M. (2011). Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers.
Advanced materials (Deerfield Beach, Fla.),
23(36), H217–H247.
https://doi.org/10.1002/adma.201102313
-
Beqa, L., Fan, Z., Singh, A. K., Senapati, D., & Ray, P. C. (2011). Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells.
ACS applied materials & interfaces,
3(9), 3316–3324.
https://doi.org/10.1021/am2004366
-
Wang, S., Fan, W., Kim, G., Hah, H. J., Lee, Y. E., Kopelman, R., Ethirajan, M., Gupta, A., Goswami, L. N., Pera, P., Morgan, J., & Pandey, R. K. (2011). Novel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapy.
Lasers in surgery and medicine,
43(7), 686–695.
https://doi.org/10.1002/lsm.21113
-
-
Pabari, R. M., Ryan, B., McCarthy, C., & Ramtoola, Z. (2011). Effect of microencapsulation shear stress on the structural integrity and biological activity of a model monoclonal antibody, trastuzumab.
Pharmaceutics,
3(3), 510–524.
https://doi.org/10.3390/pharmaceutics3030510
-
Berlin, J. M., Pham, T. T., Sano, D., Mohamedali, K. A., Marcano, D. C., Myers, J. N., & Tour, J. M. (2011). Noncovalent functionalization of carbon nanovectors with an antibody enables targeted drug delivery.
ACS nano,
5(8), 6643–6650.
https://doi.org/10.1021/nn2021293
-
Jalisatgi, S. S., Kulkarni, V. S., Tang, B., Houston, Z. H., Lee, M. W., Jr, & Hawthorne, M. F. (2011). A convenient route to diversely substituted icosahedral closomer nanoscaffolds.
Journal of the American Chemical Society,
133(32), 12382–12385.
https://doi.org/10.1021/ja204488p
-
Schädlich, A., Rose, C., Kuntsche, J., Caysa, H., Mueller, T., Göpferich, A., & Mäder, K. (2011). How stealthy are PEG-PLA nanoparticles? An NIR in vivo study combined with detailed size measurements.
Pharmaceutical research,
28(8), 1995–2007.
https://doi.org/10.1007/s11095-011-0426-5
-
Li, X., Guo, J., Asong, J., Wolfert, M. A., & Boons, G. J. (2011). Multifunctional surface modification of gold-stabilized nanoparticles by bioorthogonal reactions.
Journal of the American Chemical Society,
133(29), 11147–11153.
https://doi.org/10.1021/ja2012164
-
Ashley, C. E., Carnes, E. C., Phillips, G. K., Durfee, P. N., Buley, M. D., Lino, C. A., Padilla, D. P., Phillips, B., Carter, M. B., Willman, C. L., Brinker, C. J., Caldeira, J., Chackerian, B., Wharton, W., & Peabody, D. S. (2011). Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles.
ACS nano,
5(7), 5729–5745.
https://doi.org/10.1021/nn201397z
-
Veiseh, O., Kievit, F. M., Ellenbogen, R. G., & Zhang, M. (2011). Cancer cell invasion: treatment and monitoring opportunities in nanomedicine.
Advanced drug delivery reviews,
63(8), 582–596.
https://doi.org/10.1016/j.addr.2011.01.010
-
Saha, K., Bajaj, A., Duncan, B., & Rotello, V. M. (2011). Beauty is skin deep: a surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules.
Small (Weinheim an der Bergstrasse, Germany),
7(14), 1903–1918.
https://doi.org/10.1002/smll.201100478
-
Hu, C. M., Zhang, L., Aryal, S., Cheung, C., Fang, R. H., & Zhang, L. (2011). Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform.
Proceedings of the National Academy of Sciences of the United States of America,
108(27), 10980–10985.
https://doi.org/10.1073/pnas.1106634108
-
Smith, A. H., Robinson, E. M., Zhang, X. Q., Chow, E. K., Lin, Y., Osawa, E., Xi, J., & Ho, D. (2011). Triggered release of therapeutic antibodies from nanodiamond complexes.
Nanoscale,
3(7), 2844–2848.
https://doi.org/10.1039/c1nr10278h
-
-
Dabbagh, A., & Rajaei, S. (2011). Halothane: Is there still any place for using the gas as an anesthetic?. Hepatitis monthly, 11(7), 511–512.
-
Zhou, K., Wang, Y., Huang, X., Luby-Phelps, K., Sumer, B. D., & Gao, J. (2011). Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells.
Angewandte Chemie (International ed. in English),
50(27), 6109–6114.
https://doi.org/10.1002/anie.201100884
-
Ku, T. H., Chien, M. P., Thompson, M. P., Sinkovits, R. S., Olson, N. H., Baker, T. S., & Gianneschi, N. C. (2011). Controlling and switching the morphology of micellar nanoparticles with enzymes.
Journal of the American Chemical Society,
133(22), 8392–8395.
https://doi.org/10.1021/ja2004736
-
Yang, X., Hong, H., Grailer, J. J., Rowland, I. J., Javadi, A., Hurley, S. A., Xiao, Y., Yang, Y., Zhang, Y., Nickles, R. J., Cai, W., Steeber, D. A., & Gong, S. (2011). cRGD-functionalized, DOX-conjugated, and ⁶⁴Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging.
Biomaterials,
32(17), 4151–4160.
https://doi.org/10.1016/j.biomaterials.2011.02.006
-
Zasadzinski, J. A., Wong, B., Forbes, N., Braun, G., & Wu, G. (2011). Novel Methods of Enhanced Retention in and Rapid, Targeted Release from Liposomes.
Current opinion in colloid & interface science,
16(3), 203–214.
https://doi.org/10.1016/j.cocis.2010.12.004
-
Qin, M., Hah, H. J., Kim, G., Nie, G., Lee, Y. E., & Kopelman, R. (2011). Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy.
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology,
10(5), 832–841.
https://doi.org/10.1039/c1pp05022b
-
Ashley, C. E., Carnes, E. C., Phillips, G. K., Padilla, D., Durfee, P. N., Brown, P. A., Hanna, T. N., Liu, J., Phillips, B., Carter, M. B., Carroll, N. J., Jiang, X., Dunphy, D. R., Willman, C. L., Petsev, D. N., Evans, D. G., Parikh, A. N., Chackerian, B., Wharton, W., Peabody, D. S., … Brinker, C. J. (2011). The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers.
Nature materials,
10(5), 389–397.
https://doi.org/10.1038/nmat2992
-
Zdetsis A. D. (2011). Designing novel Sn-Bi, Si-C and Ge-C nanostructures, using simple theoretical chemical similarities.
Nanoscale research letters,
6(1), 362.
https://doi.org/10.1186/1556-276X-6-362
-
Mullen, D. G., McNerny, D. Q., Desai, A., Cheng, X. M., Dimaggio, S. C., Kotlyar, A., Zhong, Y., Qin, S., Kelly, C. V., Thomas, T. P., Majoros, I., Orr, B. G., Baker, J. R., & Banaszak Holl, M. M. (2011). Design, synthesis, and biological functionality of a dendrimer-based modular drug delivery platform.
Bioconjugate chemistry,
22(4), 679–689.
https://doi.org/10.1021/bc100360v
-
Choi, C. H., Zuckerman, J. E., Webster, P., & Davis, M. E. (2011). Targeting kidney mesangium by nanoparticles of defined size.
Proceedings of the National Academy of Sciences of the United States of America,
108(16), 6656–6661.
https://doi.org/10.1073/pnas.1103573108
-
Zhang, Y., Thomas, T. P., Lee, K. H., Li, M., Zong, H., Desai, A. M., Kotlyar, A., Huang, B., Holl, M. M., & Baker, J. R., Jr (2011). Polyvalent saccharide-functionalized generation 3 poly(amidoamine) dendrimer-methotrexate conjugate as a potential anticancer agent.
Bioorganic & medicinal chemistry,
19(8), 2557–2564.
https://doi.org/10.1016/j.bmc.2011.03.019
-
Qin, G., Li, Z., Xia, R., Li, F., O'Neill, B. E., Goodwin, J. T., Khant, H. A., Chiu, W., & Li, K. C. (2011). Partially polymerized liposomes: stable against leakage yet capable of instantaneous release for remote controlled drug delivery.
Nanotechnology,
22(15), 155605.
https://doi.org/10.1088/0957-4484/22/15/155605
-
-
-
Lovell, J. F., Jin, C. S., Huynh, E., Jin, H., Kim, C., Rubinstein, J. L., Chan, W. C., Cao, W., Wang, L. V., & Zheng, G. (2011). Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents.
Nature materials,
10(4), 324–332.
https://doi.org/10.1038/nmat2986
-
Cywińska, M. A., Grudziński, I. P., Cieszanowski, A., Bystrzejewski, M., & Popławska, M. (2011). Nanoplatforms for magnetic resonance imaging of cancer. Polish journal of radiology, 76(2), 28–36.
-
Rhee, M., Valencia, P. M., Rodriguez, M. I., Langer, R., Farokhzad, O. C., & Karnik, R. (2011). Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels.
Advanced materials (Deerfield Beach, Fla.),
23(12), H79–H83.
https://doi.org/10.1002/adma.201004333
-
Sunoqrot, S., Bae, J. W., Jin, S. E., M Pearson, R., Liu, Y., & Hong, S. (2011). Kinetically controlled cellular interactions of polymer-polymer and polymer-liposome nanohybrid systems.
Bioconjugate chemistry,
22(3), 466–474.
https://doi.org/10.1021/bc100484t
-
Jelveh, S., & Chithrani, D. B. (2011). Gold nanostructures as a platform for combinational therapy in future cancer therapeutics.
Cancers,
3(1), 1081–1110.
https://doi.org/10.3390/cancers3011081
-
Cheng, Y., Meyers, J. D., Broome, A. M., Kenney, M. E., Basilion, J. P., & Burda, C. (2011). Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates.
Journal of the American Chemical Society,
133(8), 2583–2591.
https://doi.org/10.1021/ja108846h
-
Hariri, G., Wellons, M. S., Morris, W. H., 3rd, Lukehart, C. M., & Hallahan, D. E. (2011). Multifunctional FePt nanoparticles for radiation-guided targeting and imaging of cancer.
Annals of biomedical engineering,
39(3), 946–952.
https://doi.org/10.1007/s10439-010-0219-8
-
Demers, M., Ho-Tin-Noé, B., Schatzberg, D., Yang, J. J., & Wagner, D. D. (2011). Increased efficacy of breast cancer chemotherapy in thrombocytopenic mice.
Cancer research,
71(5), 1540–1549.
https://doi.org/10.1158/0008-5472.CAN-10-2038
-
-
Yigit, M. V., Zhu, L., Ifediba, M. A., Zhang, Y., Carr, K., Moore, A., & Medarova, Z. (2011). Noninvasive MRI-SERS imaging in living mice using an innately bimodal nanomaterial.
ACS nano,
5(2), 1056–1066.
https://doi.org/10.1021/nn102587h
-
Sherlock, S. P., Tabakman, S. M., Xie, L., & Dai, H. (2011). Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals.
ACS nano,
5(2), 1505–1512.
https://doi.org/10.1021/nn103415x
-
Diop-Frimpong, B., Chauhan, V. P., Krane, S., Boucher, Y., & Jain, R. K. (2011). Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors.
Proceedings of the National Academy of Sciences of the United States of America,
108(7), 2909–2914.
https://doi.org/10.1073/pnas.1018892108
-
Kim, J., Cao, L., Shvartsman, D., Silva, E. A., & Mooney, D. J. (2011). Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis.
Nano letters,
11(2), 694–700.
https://doi.org/10.1021/nl103812a
-
Farrell, D., Ptak, K., Panaro, N. J., & Grodzinski, P. (2011). Nanotechnology-based cancer therapeutics--promise and challenge--lessons learned through the NCI Alliance for Nanotechnology in Cancer.
Pharmaceutical research,
28(2), 273–278.
https://doi.org/10.1007/s11095-010-0214-7
-
-
-
Johnson, J. A., Lu, Y. Y., Burts, A. O., Lim, Y. H., Finn, M. G., Koberstein, J. T., Turro, N. J., Tirrell, D. A., & Grubbs, R. H. (2011). Core-clickable PEG-branch-azide bivalent-bottle-brush polymers by ROMP: grafting-through and clicking-to.
Journal of the American Chemical Society,
133(3), 559–566.
https://doi.org/10.1021/ja108441d
-
-
Iancu, C., Mocan, L., Bele, C., Orza, A. I., Tabaran, F. A., Catoi, C., Stiufiuc, R., Stir, A., Matea, C., Iancu, D., Agoston-Coldea, L., Zaharie, F., & Mocan, T. (2011). Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin.
International journal of nanomedicine,
6, 129–141.
https://doi.org/10.2147/IJN.S15841
-
Floyd, W. C., 3rd, Datta, G. K., Imamura, S., Kieler-Ferguson, H. M., Jerger, K., Patterson, A. W., Fox, M. E., Szoka, F. C., Fréchet, J. M., & Ellman, J. A. (2011). Chemotherapeutic evaluation of a synthetic tubulysin analogue-dendrimer conjugate in c26 tumor bearing mice.
ChemMedChem,
6(1), 49–53.
https://doi.org/10.1002/cmdc.201000377
-
Zhang, M., Guo, R., Wang, Y., Cao, X., Shen, M., & Shi, X. (2011). Multifunctional dendrimer/combretastatin A4 inclusion complexes enable in vitro targeted cancer therapy.
International journal of nanomedicine,
6, 2337–2349.
https://doi.org/10.2147/IJN.S24705
-
Kateb, B., Chiu, K., Black, K. L., Yamamoto, V., Khalsa, B., Ljubimova, J. Y., Ding, H., Patil, R., Portilla-Arias, J. A., Modo, M., Moore, D. F., Farahani, K., Okun, M. S., Prakash, N., Neman, J., Ahdoot, D., Grundfest, W., Nikzad, S., & Heiss, J. D. (2011). Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy?.
NeuroImage,
54 Suppl 1(Suppl 1), S106–S124.
https://doi.org/10.1016/j.neuroimage.2010.01.105
-
Yang, L. M., & Blount, P. (2011). Manipulating the permeation of charged compounds through the MscL nanovalve.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
25(1), 428–434.
https://doi.org/10.1096/fj.10-170076
-
Dinarvand, R., Sepehri, N., Manoochehri, S., Rouhani, H., & Atyabi, F. (2011). Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents.
International journal of nanomedicine,
6, 877–895.
https://doi.org/10.2147/IJN.S18905
-
-
Boso, D. P., Lee, S. Y., Ferrari, M., Schrefler, B. A., & Decuzzi, P. (2011). Optimizing particle size for targeting diseased microvasculature: from experiments to artificial neural networks.
International journal of nanomedicine,
6, 1517–1526.
https://doi.org/10.2147/IJN.S20283
-
Chen, W., & Hu, S. (2011). Suitable carriers for encapsulation and distribution of endostar: comparison of endostar-loaded particulate carriers.
International journal of nanomedicine,
6, 1535–1541.
https://doi.org/10.2147/IJN.S21881
-
Liu, Y., Zhang, B., & Yan, B. (2011). Enabling anticancer therapeutics by nanoparticle carriers: the delivery of Paclitaxel.
International journal of molecular sciences,
12(7), 4395–4413.
https://doi.org/10.3390/ijms12074395
-
Arvizo, R. R., Miranda, O. R., Moyano, D. F., Walden, C. A., Giri, K., Bhattacharya, R., Robertson, J. D., Rotello, V. M., Reid, J. M., & Mukherjee, P. (2011). Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles.
PloS one,
6(9), e24374.
https://doi.org/10.1371/journal.pone.0024374
-
Nacev, A., Kim, S. H., Rodriguez-Canales, J., Tangrea, M. A., Shapiro, B., & Emmert-Buck, M. R. (2011). A dynamic magnetic shift method to increase nanoparticle concentration in cancer metastases: a feasibility study using simulations on autopsy specimens.
International journal of nanomedicine,
6, 2907–2923.
https://doi.org/10.2147/IJN.S23724
-
McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O'Sullivan, J. M., Prise, K. M., Hirst, D. G., & Currell, F. J. (2011). Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles.
Scientific reports,
1, 18.
https://doi.org/10.1038/srep00018
-
McDaniel, J. R., Callahan, D. J., & Chilkoti, A. (2010). Drug delivery to solid tumors by elastin-like polypeptides.
Advanced drug delivery reviews,
62(15), 1456–1467.
https://doi.org/10.1016/j.addr.2010.05.004
-
Lu, W., Singh, A. K., Khan, S. A., Senapati, D., Yu, H., & Ray, P. C. (2010). Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy.
Journal of the American Chemical Society,
132(51), 18103–18114.
https://doi.org/10.1021/ja104924b
-
Johnson, J. A., Lu, Y. Y., Burts, A. O., Xia, Y., Durrell, A. C., Tirrell, D. A., & Grubbs, R. H. (2010). Drug-loaded, bivalent-bottle-brush polymers by graft-through ROMP.
Macromolecules,
43(24), 10326–10335.
https://doi.org/10.1021/ma1021506
-
Lee, S. M., Song, Y., Hong, B. J., MacRenaris, K. W., Mastarone, D. J., O'Halloran, T. V., Meade, T. J., & Nguyen, S. T. (2010). Modular polymer-caged nanobins as a theranostic platform with enhanced magnetic resonance relaxivity and pH-responsive drug release.
Angewandte Chemie (International ed. in English),
49(51), 9960–9964.
https://doi.org/10.1002/anie.201004867
-
Nair, H. B., Sung, B., Yadav, V. R., Kannappan, R., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer.
Biochemical pharmacology,
80(12), 1833–1843.
https://doi.org/10.1016/j.bcp.2010.07.021
-
Lee, S. M., O'Halloran, T. V., & Nguyen, S. T. (2010). Polymer-caged nanobins for synergistic cisplatin-doxorubicin combination chemotherapy.
Journal of the American Chemical Society,
132(48), 17130–17138.
https://doi.org/10.1021/ja107333g
-
Bardhan, R., Chen, W., Bartels, M., Perez-Torres, C., Botero, M. F., McAninch, R. W., Contreras, A., Schiff, R., Pautler, R. G., Halas, N. J., & Joshi, A. (2010). Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo.
Nano letters,
10(12), 4920–4928.
https://doi.org/10.1021/nl102889y
-
Guo, J., Chen, G., Ning, X., Wolfert, M. A., Li, X., Xu, B., & Boons, G. J. (2010). Surface modification of polymeric micelles by strain-promoted alkyne-azide cycloadditions.
Chemistry (Weinheim an der Bergstrasse, Germany),
16(45), 13360–13366.
https://doi.org/10.1002/chem.201002532
-
-
Choi, H. S., & Frangioni, J. V. (2010). Nanoparticles for biomedical imaging: fundamentals of clinical translation. Molecular imaging, 9(6), 291–310.
-
Kumar, R., Ohulchanskyy, T. Y., Turowski, S. G., Thompson, M. E., Seshadri, M., & Prasad, P. N. (2010). Combined magnetic resonance and optical imaging of head and neck tumor xenografts using Gadolinium-labelled phosphorescent polymeric nanomicelles.
Head & neck oncology,
2, 35.
https://doi.org/10.1186/1758-3284-2-35
-
Hu, S., & Zhang, Y. (2010). Endostar-loaded PEG-PLGA nanoparticles: in vitro and in vivo evaluation.
International journal of nanomedicine,
5, 1039–1048.
https://doi.org/10.2147/IJN.S14753
-
Cobley, C. M., & Xia, Y. (2010). Engineering the Properties of Metal Nanostructures via Galvanic Replacement Reactions.
Materials science & engineering. R, Reports : a review journal,
70(3-6), 44–62.
https://doi.org/10.1016/j.mser.2010.06.002
-
Duncan, B., Kim, C., & Rotello, V. M. (2010). Gold nanoparticle platforms as drug and biomacromolecule delivery systems.
Journal of controlled release : official journal of the Controlled Release Society,
148(1), 122–127.
https://doi.org/10.1016/j.jconrel.2010.06.004
-
Chen, J., Yang, M., Zhang, Q., Cho, E. C., Cobley, C. M., Kim, C., Glaus, C., Wang, L. V., Welch, M. J., & Xia, Y. (2010). Gold Nanocages: A Novel Class of Multifunctional Nanomaterials for Theranostic Applications.
Advanced functional materials,
20(21), 3684–3694.
https://doi.org/10.1002/adfm.201001329
-
Patil, R., Portilla-Arias, J., Ding, H., Inoue, S., Konda, B., Hu, J., Wawrowsky, K. A., Shin, P. K., Black, K. L., Holler, E., & Ljubimova, J. Y. (2010). Temozolomide delivery to tumor cells by a multifunctional nano vehicle based on poly(β-L-malic acid).
Pharmaceutical research,
27(11), 2317–2329.
https://doi.org/10.1007/s11095-010-0091-0
-
Johnson-Lyles, D. N., Peifley, K., Lockett, S., Neun, B. W., Hansen, M., Clogston, J., Stern, S. T., & McNeil, S. E. (2010). Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction.
Toxicology and applied pharmacology,
248(3), 249–258.
https://doi.org/10.1016/j.taap.2010.08.008
-
Fang, C., Veiseh, O., Kievit, F., Bhattarai, N., Wang, F., Stephen, Z., Li, C., Lee, D., Ellenbogen, R. G., & Zhang, M. (2010). Functionalization of iron oxide magnetic nanoparticles with targeting ligands: their physicochemical properties and in vivo behavior.
Nanomedicine (London, England),
5(9), 1357–1369.
https://doi.org/10.2217/nnm.10.55
-
Vuorela, T., Catte, A., Niemelä, P. S., Hall, A., Hyvönen, M. T., Marrink, S. J., Karttunen, M., & Vattulainen, I. (2010). Role of lipids in spheroidal high density lipoproteins.
PLoS computational biology,
6(10), e1000964.
https://doi.org/10.1371/journal.pcbi.1000964
-
Rudra, A., Deepa, R. M., Ghosh, M. K., Ghosh, S., & Mukherjee, B. (2010). Doxorubicin-loaded phosphatidylethanolamine-conjugated nanoliposomes: in vitro characterization and their accumulation in liver, kidneys, and lungs in rats.
International journal of nanomedicine,
5, 811–823.
https://doi.org/10.2147/IJN.S13031
-
Hariri, G., Yan, H., Wang, H., Han, Z., & Hallahan, D. E. (2010). Radiation-guided drug delivery to mouse models of lung cancer.
Clinical cancer research : an official journal of the American Association for Cancer Research,
16(20), 4968–4977.
https://doi.org/10.1158/1078-0432.CCR-10-0969
-
Yu, B., Tai, H. C., Xue, W., Lee, L. J., & Lee, R. J. (2010). Receptor-targeted nanocarriers for therapeutic delivery to cancer.
Molecular membrane biology,
27(7), 286–298.
https://doi.org/10.3109/09687688.2010.521200
-
Capurso, N. A., Look, M., Jeanbart, L., Nowyhed, H., Abraham, C., Craft, J., & Fahmy, T. M. (2010). Development of a nanoparticulate formulation of retinoic acid that suppresses Th17 cells and upregulates regulatory T cells.
Self/nonself,
1(4), 335–340.
https://doi.org/10.4161/self.1.4.13946
-
Lee, S. M., Ahn, R. W., Chen, F., Fought, A. J., O'Halloran, T. V., Cryns, V. L., & Nguyen, S. T. (2010). Biological evaluation of pH-responsive polymer-caged nanobins for breast cancer therapy.
ACS nano,
4(9), 4971–4978.
https://doi.org/10.1021/nn100560p
-
Gao, W., Liu, W., Christensen, T., Zalutsky, M. R., & Chilkoti, A. (2010). In situ growth of a PEG-like polymer from the C terminus of an intein fusion protein improves pharmacokinetics and tumor accumulation.
Proceedings of the National Academy of Sciences of the United States of America,
107(38), 16432–16437.
https://doi.org/10.1073/pnas.1006044107
-
Braun, K., Wiessler, M., Pipkorn, R., Ehemann, V., Bäuerle, T., Fleischhacker, H., Müller, G., Lorenz, P., & Waldeck, W. (2010). A cyclic-RGD-BioShuttle functionalized with TMZ by DARinv "Click Chemistry" targeted to αvβ3 integrin for therapy.
International journal of medical sciences,
7(6), 326–339.
https://doi.org/10.7150/ijms.7.326
-
Mullen, D. G., Borgmeier, E. L., Desai, A. M., van Dongen, M. A., Barash, M., Cheng, X. M., Baker, J. R., Jr, & Banaszak Holl, M. M. (2010). Isolation and characterization of dendrimers with precise numbers of functional groups.
Chemistry (Weinheim an der Bergstrasse, Germany),
16(35), 10675–10678.
https://doi.org/10.1002/chem.201001175
-
Jin, S. E., Bae, J. W., & Hong, S. (2010). Multiscale observation of biological interactions of nanocarriers: from nano to macro.
Microscopy research and technique,
73(9), 813–823.
https://doi.org/10.1002/jemt.20847
-
Kim, T. H., Chen, Y., Mount, C. W., Gombotz, W. R., Li, X., & Pun, S. H. (2010). Evaluation of temperature-sensitive, indocyanine green-encapsulating micelles for noninvasive near-infrared tumor imaging.
Pharmaceutical research,
27(9), 1900–1913.
https://doi.org/10.1007/s11095-010-0190-y
-
Haun, J. B., Devaraj, N. K., Hilderbrand, S. A., Lee, H., & Weissleder, R. (2010). Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection.
Nature nanotechnology,
5(9), 660–665.
https://doi.org/10.1038/nnano.2010.148
-
Mullen, D. G., Borgmeier, E. L., Fang, M., McNerny, D. Q., Desai, A., Baker, J. R., Jr, Orr, B. G., & Holl, M. M. (2010). Effect of Mass Transport in the Synthesis of Partially Acetylated Dendrimer: Implications for Functional Ligand-Nanoparticle Distributions.
Macromolecules,
43(16), 6577–6587.
https://doi.org/10.1021/ma100663c
-
Roos, W. H., Gibbons, M. M., Arkhipov, A., Uetrecht, C., Watts, N. R., Wingfield, P. T., Steven, A. C., Heck, A. J., Schulten, K., Klug, W. S., & Wuite, G. J. (2010). Squeezing protein shells: how continuum elastic models, molecular dynamics simulations, and experiments coalesce at the nanoscale.
Biophysical journal,
99(4), 1175–1181.
https://doi.org/10.1016/j.bpj.2010.05.033
-
Sahay, G., Alakhova, D. Y., & Kabanov, A. V. (2010). Endocytosis of nanomedicines.
Journal of controlled release : official journal of the Controlled Release Society,
145(3), 182–195.
https://doi.org/10.1016/j.jconrel.2010.01.036
-
Sakamoto, J. H., van de Ven, A. L., Godin, B., Blanco, E., Serda, R. E., Grattoni, A., Ziemys, A., Bouamrani, A., Hu, T., Ranganathan, S. I., De Rosa, E., Martinez, J. O., Smid, C. A., Buchanan, R. M., Lee, S. Y., Srinivasan, S., Landry, M., Meyn, A., Tasciotti, E., Liu, X., … Ferrari, M. (2010). Enabling individualized therapy through nanotechnology.
Pharmacological research,
62(2), 57–89.
https://doi.org/10.1016/j.phrs.2009.12.011
-
Zhang, J., & Ma, P. X. (2010). Host-guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications.
Nano today,
5(4), 337–350.
https://doi.org/10.1016/j.nantod.2010.06.011
-
Luo, J., Xiao, K., Li, Y., Lee, J. S., Shi, L., Tan, Y. H., Xing, L., Holland Cheng, R., Liu, G. Y., & Lam, K. S. (2010). Well-defined, size-tunable, multifunctional micelles for efficient paclitaxel delivery for cancer treatment.
Bioconjugate chemistry,
21(7), 1216–1224.
https://doi.org/10.1021/bc1000033
-
Ahn, R. W., Chen, F., Chen, H., Stern, S. T., Clogston, J. D., Patri, A. K., Raja, M. R., Swindell, E. P., Parimi, V., Cryns, V. L., & O'Halloran, T. V. (2010). A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer.
Clinical cancer research : an official journal of the American Association for Cancer Research,
16(14), 3607–3617.
https://doi.org/10.1158/1078-0432.CCR-10-0068
-
Thompson, M. P., Chien, M. P., Ku, T. H., Rush, A. M., & Gianneschi, N. C. (2010). Smart lipids for programmable nanomaterials.
Nano letters,
10(7), 2690–2693.
https://doi.org/10.1021/nl101640k
-
Chien, M. P., Rush, A. M., Thompson, M. P., & Gianneschi, N. C. (2010). Programmable shape-shifting micelles.
Angewandte Chemie (International ed. in English),
49(30), 5076–5080.
https://doi.org/10.1002/anie.201000265
-
MacEwan, S. R., Callahan, D. J., & Chilkoti, A. (2010). Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery.
Nanomedicine (London, England),
5(5), 793–806.
https://doi.org/10.2217/nnm.10.50
-
Febvay, S., Marini, D. M., Belcher, A. M., & Clapham, D. E. (2010). Targeted cytosolic delivery of cell-impermeable compounds by nanoparticle-mediated, light-triggered endosome disruption.
Nano letters,
10(6), 2211–2219.
https://doi.org/10.1021/nl101157z
-
-
Arvizo, R., Bhattacharya, R., & Mukherjee, P. (2010). Gold nanoparticles: opportunities and challenges in nanomedicine.
Expert opinion on drug delivery,
7(6), 753–763.
https://doi.org/10.1517/17425241003777010
-
Wang, T., D'Souza, G. G., Bedi, D., Fagbohun, O. A., Potturi, L. P., Papahadjopoulos-Sternberg, B., Petrenko, V. A., & Torchilin, V. P. (2010). Enhanced binding and killing of target tumor cells by drug-loaded liposomes modified with tumor-specific phage fusion coat protein.
Nanomedicine (London, England),
5(4), 563–574.
https://doi.org/10.2217/nnm.10.30
-
Dong, X., & Mumper, R. J. (2010). Nanomedicinal strategies to treat multidrug-resistant tumors: current progress.
Nanomedicine (London, England),
5(4), 597–615.
https://doi.org/10.2217/nnm.10.35
-
Blanco, E., Bey, E. A., Khemtong, C., Yang, S. G., Setti-Guthi, J., Chen, H., Kessinger, C. W., Carnevale, K. A., Bornmann, W. G., Boothman, D. A., & Gao, J. (2010). Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy.
Cancer research,
70(10), 3896–3904.
https://doi.org/10.1158/0008-5472.CAN-09-3995
-
Chanda, N., Kattumuri, V., Shukla, R., Zambre, A., Katti, K., Upendran, A., Kulkarni, R. R., Kan, P., Fent, G. M., Casteel, S. W., Smith, C. J., Boote, E., Robertson, J. D., Cutler, C., Lever, J. R., Katti, K. V., & Kannan, R. (2010). Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity.
Proceedings of the National Academy of Sciences of the United States of America,
107(19), 8760–8765.
https://doi.org/10.1073/pnas.1002143107
-
Godin, B., Sakamoto, J. H., Serda, R. E., Grattoni, A., Bouamrani, A., & Ferrari, M. (2010). Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases.
Trends in pharmacological sciences,
31(5), 199–205.
https://doi.org/10.1016/j.tips.2010.01.003
-
Cobley, C. M., Au, L., Chen, J., & Xia, Y. (2010). Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery.
Expert opinion on drug delivery,
7(5), 577–587.
https://doi.org/10.1517/17425240903571614
-
Scheinberg, D. A., Villa, C. H., Escorcia, F. E., & McDevitt, M. R. (2010). Conscripts of the infinite armada: systemic cancer therapy using nanomaterials.
Nature reviews. Clinical oncology,
7(5), 266–276.
https://doi.org/10.1038/nrclinonc.2010.38
-
Simnick, A. J., Valencia, C. A., Liu, R., & Chilkoti, A. (2010). Morphing low-affinity ligands into high-avidity nanoparticles by thermally triggered self-assembly of a genetically encoded polymer.
ACS nano,
4(4), 2217–2227.
https://doi.org/10.1021/nn901732h
-
Tam, J. M., Tam, J. O., Murthy, A., Ingram, D. R., Ma, L. L., Travis, K., Johnston, K. P., & Sokolov, K. V. (2010). Controlled assembly of biodegradable plasmonic nanoclusters for near-infrared imaging and therapeutic applications.
ACS nano,
4(4), 2178–2184.
https://doi.org/10.1021/nn9015746
-
van der Poll, D. G., Kieler-Ferguson, H. M., Floyd, W. C., Guillaudeu, S. J., Jerger, K., Szoka, F. C., & Fréchet, J. M. (2010). Design, synthesis, and biological evaluation of a robust, biodegradable dendrimer.
Bioconjugate chemistry,
21(4), 764–773.
https://doi.org/10.1021/bc900553n
-
Santra, S., Kaittanis, C., & Perez, J. M. (2010). Aliphatic hyperbranched polyester: a new building block in the construction of multifunctional nanoparticles and nanocomposites.
Langmuir : the ACS journal of surfaces and colloids,
26(8), 5364–5373.
https://doi.org/10.1021/la9037843
-
-
-
Caldorera-Moore, M., Guimard, N., Shi, L., & Roy, K. (2010). Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers.
Expert opinion on drug delivery,
7(4), 479–495.
https://doi.org/10.1517/17425240903579971
-
Valencia, P. M., Basto, P. A., Zhang, L., Rhee, M., Langer, R., Farokhzad, O. C., & Karnik, R. (2010). Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing.
ACS nano,
4(3), 1671–1679.
https://doi.org/10.1021/nn901433u
-
Ruoslahti, E., Bhatia, S. N., & Sailor, M. J. (2010). Targeting of drugs and nanoparticles to tumors.
The Journal of cell biology,
188(6), 759–768.
https://doi.org/10.1083/jcb.200910104
-
Zhang, Y., Thomas, T. P., Desai, A., Zong, H., Leroueil, P. R., Majoros, I. J., & Baker, J. R., Jr (2010). Targeted dendrimeric anticancer prodrug: a methotrexate-folic acid-poly(amidoamine) conjugate and a novel, rapid, "one pot" synthetic approach.
Bioconjugate chemistry,
21(3), 489–495.
https://doi.org/10.1021/bc9003958
-
Lee, M. J., Veiseh, O., Bhattarai, N., Sun, C., Hansen, S. J., Ditzler, S., Knoblaugh, S., Lee, D., Ellenbogen, R., Zhang, M., & Olson, J. M. (2010). Rapid pharmacokinetic and biodistribution studies using cholorotoxin-conjugated iron oxide nanoparticles: a novel non-radioactive method.
PloS one,
5(3), e9536.
https://doi.org/10.1371/journal.pone.0009536
-
Zhang, K., Fang, H., Wang, Z., Li, Z., Taylor, J. S., & Wooley, K. L. (2010). Structure-activity relationships of cationic shell-crosslinked knedel-like nanoparticles: shell composition and transfection efficiency/cytotoxicity.
Biomaterials,
31(7), 1805–1813.
https://doi.org/10.1016/j.biomaterials.2009.10.033
-
Jarzyna, P. A., Gianella, A., Skajaa, T., Knudsen, G., Deddens, L. H., Cormode, D. P., Fayad, Z. A., & Mulder, W. J. (2010). Multifunctional imaging nanoprobes.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology,
2(2), 138–150.
https://doi.org/10.1002/wnan.72
-
Mullen, D. G., Fang, M., Desai, A., Baker, J. R., Orr, B. G., & Banaszak Holl, M. M. (2010). A quantitative assessment of nanoparticle-ligand distributions: implications for targeted drug and imaging delivery in dendrimer conjugates.
ACS nano,
4(2), 657–670.
https://doi.org/10.1021/nn900999c
-
You, J., Zhang, G., & Li, C. (2010). Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release.
ACS nano,
4(2), 1033–1041.
https://doi.org/10.1021/nn901181c
-
Cheng, H., Kastrup, C. J., Ramanathan, R., Siegwart, D. J., Ma, M., Bogatyrev, S. R., Xu, Q., Whitehead, K. A., Langer, R., & Anderson, D. G. (2010). Nanoparticulate cellular patches for cell-mediated tumoritropic delivery.
ACS nano,
4(2), 625–631.
https://doi.org/10.1021/nn901319y
-
Chan, J. M., Zhang, L., Tong, R., Ghosh, D., Gao, W., Liao, G., Yuet, K. P., Gray, D., Rhee, J. W., Cheng, J., Golomb, G., Libby, P., Langer, R., & Farokhzad, O. C. (2010). Spatiotemporal controlled delivery of nanoparticles to injured vasculature.
Proceedings of the National Academy of Sciences of the United States of America,
107(5), 2213–2218.
https://doi.org/10.1073/pnas.0914585107
-
Guthi, J. S., Yang, S. G., Huang, G., Li, S., Khemtong, C., Kessinger, C. W., Peyton, M., Minna, J. D., Brown, K. C., & Gao, J. (2010). MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells.
Molecular pharmaceutics,
7(1), 32–40.
https://doi.org/10.1021/mp9001393
-
Sahay, G., Kim, J. O., Kabanov, A. V., & Bronich, T. K. (2010). The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents.
Biomaterials,
31(5), 923–933.
https://doi.org/10.1016/j.biomaterials.2009.09.101
-
Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J. F., Heurtaux, D., Clayette, P., Kreuz, C., Chang, J. S., Hwang, Y. K., Marsaud, V., Bories, P. N., Cynober, L., Gil, S., Férey, G., Couvreur, P., & Gref, R. (2010). Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging.
Nature materials,
9(2), 172–178.
https://doi.org/10.1038/nmat2608
-
Aryal, S., Hu, C. M., & Zhang, L. (2010). Polymer--cisplatin conjugate nanoparticles for acid-responsive drug delivery.
ACS nano,
4(1), 251–258.
https://doi.org/10.1021/nn9014032
-
Massodi, I., Moktan, S., Rawat, A., Bidwell, G. L., 3rd, & Raucher, D. (2010). Inhibition of ovarian cancer cell proliferation by a cell cycle inhibitory peptide fused to a thermally responsive polypeptide carrier.
International journal of cancer,
126(2), 533–544.
https://doi.org/10.1002/ijc.24725
-
Patil, Y. B., Swaminathan, S. K., Sadhukha, T., Ma, L., & Panyam, J. (2010). The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance.
Biomaterials,
31(2), 358–365.
https://doi.org/10.1016/j.biomaterials.2009.09.048
-
Choi, H. S., Liu, W., Liu, F., Nasr, K., Misra, P., Bawendi, M. G., & Frangioni, J. V. (2010). Design considerations for tumour-targeted nanoparticles.
Nature nanotechnology,
5(1), 42–47.
https://doi.org/10.1038/nnano.2009.314
-
Dvir, T., Banghart, M. R., Timko, B. P., Langer, R., & Kohane, D. S. (2010). Photo-targeted nanoparticles.
Nano letters,
10(1), 250–254.
https://doi.org/10.1021/nl903411s
-
Rajendran, L., Knölker, H. J., & Simons, K. (2010). Subcellular targeting strategies for drug design and delivery.
Nature reviews. Drug discovery,
9(1), 29–42.
https://doi.org/10.1038/nrd2897
-
Godin, B., Driessen, W. H., Proneth, B., Lee, S. Y., Srinivasan, S., Rumbaut, R., Arap, W., Pasqualini, R., Ferrari, M., & Decuzzi, P. (2010). An integrated approach for the rational design of nanovectors for biomedical imaging and therapy.
Advances in genetics,
69, 31–64.
https://doi.org/10.1016/S0065-2660(10)69009-8
-
Siddiqui, I. A., Adhami, V. M., Ahmad, N., & Mukhtar, H. (2010). Nanochemoprevention: sustained release of bioactive food components for cancer prevention.
Nutrition and cancer,
62(7), 883–890.
https://doi.org/10.1080/01635581.2010.509537
-
Portilla-Arias, J., Patil, R., Hu, J., Ding, H., Black, K. L., García-Alvarez, M., Muñoz-Guerra, S., Ljubimova, J. Y., & Holler, E. (2010). Nanoconjugate Platforms Development Based in Poly(β,L-Malic Acid) Methyl Esters for Tumor Drug Delivery.
Journal of nanotechnology,
2010, 825363.
https://doi.org/10.1155/2010/825363
-
Kim, Y., Hechler, B., Gao, Z. G., Gachet, C., & Jacobson, K. A. (2009). PEGylated dendritic unimolecular micelles as versatile carriers for ligands of G protein-coupled receptors.
Bioconjugate chemistry,
20(10), 1888–1898.
https://doi.org/10.1021/bc9001689
-
Xiao, Y., Gao, X., Taratula, O., Treado, S., Urbas, A., Holbrook, R. D., Cavicchi, R. E., Avedisian, C. T., Mitra, S., Savla, R., Wagner, P. D., Srivastava, S., & He, H. (2009). Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells.
BMC cancer,
9, 351.
https://doi.org/10.1186/1471-2407-9-351
-
Liu, J., Jiang, Z., Zhang, S., & Saltzman, W. M. (2009). Poly(omega-pentadecalactone-co-butylene-co-succinate) nanoparticles as biodegradable carriers for camptothecin delivery.
Biomaterials,
30(29), 5707–5719.
https://doi.org/10.1016/j.biomaterials.2009.06.061
-
Bhirde, A. A., Sousa, A. A., Patel, V., Azari, A. A., Gutkind, J. S., Leapman, R. D., & Rusling, J. F. (2009). Imaging the distribution of individual platinum-based anticancer drug molecules attached to single-wall carbon nanotubes.
Nanomedicine (London, England),
4(7), 763–772.
https://doi.org/10.2217/nnm.09.56
-
-
Hanley, C., Thurber, A., Hanna, C., Punnoose, A., Zhang, J., & Wingett, D. G. (2009). The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction.
Nanoscale research letters,
4(12), 1409–1420.
https://doi.org/10.1007/s11671-009-9413-8
-
Kim, D., Gao, Z. G., Lee, E. S., & Bae, Y. H. (2009). In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer.
Molecular pharmaceutics,
6(5), 1353–1362.
https://doi.org/10.1021/mp900021q
-
Rozhkova, E. A., Ulasov, I., Lai, B., Dimitrijevic, N. M., Lesniak, M. S., & Rajh, T. (2009). A high-performance nanobio photocatalyst for targeted brain cancer therapy.
Nano letters,
9(9), 3337–3342.
https://doi.org/10.1021/nl901610f
-
Fox, M. E., Szoka, F. C., & Fréchet, J. M. (2009). Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture.
Accounts of chemical research,
42(8), 1141–1151.
https://doi.org/10.1021/ar900035f
-
Beaudette, T. T., Cohen, J. A., Bachelder, E. M., Broaders, K. E., Cohen, J. L., Engleman, E. G., & Fréchet, J. M. (2009). Chemoselective ligation in the functionalization of polysaccharide-based particles.
Journal of the American Chemical Society,
131(30), 10360–10361.
https://doi.org/10.1021/ja903984s
-
Nasti, A., Zaki, N. M., de Leonardis, P., Ungphaiboon, S., Sansongsak, P., Rimoli, M. G., & Tirelli, N. (2009). Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation.
Pharmaceutical research,
26(8), 1918–1930.
https://doi.org/10.1007/s11095-009-9908-0
-
Mulder, W. J., Strijkers, G. J., van Tilborg, G. A., Cormode, D. P., Fayad, Z. A., & Nicolay, K. (2009). Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging.
Accounts of chemical research,
42(7), 904–914.
https://doi.org/10.1021/ar800223c
-
Shi, X., Wang, S. H., Van Antwerp, M. E., Chen, X., & Baker, J. R., Jr (2009). Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles.
The Analyst,
134(7), 1373–1379.
https://doi.org/10.1039/b902199j
-
Fang, C., Bhattarai, N., Sun, C., & Zhang, M. (2009). Functionalized nanoparticles with long-term stability in biological media.
Small (Weinheim an der Bergstrasse, Germany),
5(14), 1637–1641.
https://doi.org/10.1002/smll.200801647
-
Gullotti, E., & Yeo, Y. (2009). Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery.
Molecular pharmaceutics,
6(4), 1041–1051.
https://doi.org/10.1021/mp900090z
-
-
Banerjee, J., Hanson, A. J., Gadam, B., Elegbede, A. I., Tobwala, S., Ganguly, B., Wagh, A. V., Muhonen, W. W., Law, B., Shabb, J. B., Srivastava, D. K., & Mallik, S. (2009). Release of liposomal contents by cell-secreted matrix metalloproteinase-9.
Bioconjugate chemistry,
20(7), 1332–1339.
https://doi.org/10.1021/bc9000646
-
Khemtong, C., Kessinger, C. W., & Gao, J. (2009). Polymeric nanomedicine for cancer MR imaging and drug delivery.
Chemical communications (Cambridge, England), (24), 3497–3510.
https://doi.org/10.1039/b821865j
-
Zupancich, J. A., Bates, F. S., & Hillmyer, M. A. (2009). Synthesis and self-assembly of RGD-functionalized PEO-PB amphiphiles.
Biomacromolecules,
10(6), 1554–1563.
https://doi.org/10.1021/bm900149b
-
-
Vincent, A., Babu, S., Heckert, E., Dowding, J., Hirst, S. M., Inerbaev, T. M., Self, W. T., Reilly, C. M., Masunov, A. E., Rahman, T. S., & Seal, S. (2009). Protonated nanoparticle surface governing ligand tethering and cellular targeting.
ACS nano,
3(5), 1203–1211.
https://doi.org/10.1021/nn9000148
-
Basu, S., Harfouche, R., Soni, S., Chimote, G., Mashelkar, R. A., & Sengupta, S. (2009). Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy.
Proceedings of the National Academy of Sciences of the United States of America,
106(19), 7957–7961.
https://doi.org/10.1073/pnas.0902857106
-
Wang, Z., Chui, W. K., & Ho, P. C. (2009). Design of a multifunctional PLGA nanoparticulate drug delivery system: evaluation of its physicochemical properties and anticancer activity to malignant cancer cells.
Pharmaceutical research,
26(5), 1162–1171.
https://doi.org/10.1007/s11095-009-9837-y
-
Liu, J., Kopecková, P., Bühler, P., Wolf, P., Pan, H., Bauer, H., Elsässer-Beile, U., & Kopecek, J. (2009). Biorecognition and subcellular trafficking of HPMA copolymer-anti-PSMA antibody conjugates by prostate cancer cells.
Molecular pharmaceutics,
6(3), 959–970.
https://doi.org/10.1021/mp8002682
-
-
Agasti, S. S., Chompoosor, A., You, C. C., Ghosh, P., Kim, C. K., & Rotello, V. M. (2009). Photoregulated release of caged anticancer drugs from gold nanoparticles.
Journal of the American Chemical Society,
131(16), 5728–5729.
https://doi.org/10.1021/ja900591t
-
Miller, A. C., Bershteyn, A., Tan, W., Hammond, P. T., Cohen, R. E., & Irvine, D. J. (2009). Block copolymer micelles as nanocontainers for controlled release of proteins from biocompatible oil phases.
Biomacromolecules,
10(4), 732–741.
https://doi.org/10.1021/bm800913r
-
Siddiqui, I. A., Adhami, V. M., Bharali, D. J., Hafeez, B. B., Asim, M., Khwaja, S. I., Ahmad, N., Cui, H., Mousa, S. A., & Mukhtar, H. (2009). Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate.
Cancer research,
69(5), 1712–1716.
https://doi.org/10.1158/0008-5472.CAN-08-3978
-
Kim, C. K., Ghosh, P., Pagliuca, C., Zhu, Z. J., Menichetti, S., & Rotello, V. M. (2009). Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells.
Journal of the American Chemical Society,
131(4), 1360–1361.
https://doi.org/10.1021/ja808137c
-
Veiseh, O., Kievit, F. M., Gunn, J. W., Ratner, B. D., & Zhang, M. (2009). A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells.
Biomaterials,
30(4), 649–657.
https://doi.org/10.1016/j.biomaterials.2008.10.003
-
Blanco, E., Kessinger, C. W., Sumer, B. D., & Gao, J. (2009). Multifunctional micellar nanomedicine for cancer therapy.
Experimental biology and medicine (Maywood, N.J.),
234(2), 123–131.
https://doi.org/10.3181/0808-MR-250
-
Wu, W., Hsiao, S. C., Carrico, Z. M., & Francis, M. B. (2009). Genome-free viral capsids as multivalent carriers for taxol delivery.
Angewandte Chemie (International ed. in English),
48(50), 9493–9497.
https://doi.org/10.1002/anie.200902426
-
Boomer, J. A., Qualls, M. M., Inerowicz, H. D., Haynes, R. H., Patri, V. S., Kim, J. M., & Thompson, D. H. (2009). Cytoplasmic delivery of liposomal contents mediated by an acid-labile cholesterol-vinyl ether-PEG conjugate.
Bioconjugate chemistry,
20(1), 47–59.
https://doi.org/10.1021/bc800239b
-
Chen, B. A., Lai, B. B., Cheng, J., Xia, G. H., Gao, F., Xu, W. L., Ding, J. H., Gao, C., Sun, X. C., Xu, C. R., Chen, W. J., Chen, N. N., Liu, L. J., Li, X. M., & Wang, X. M. (2009). Daunorubicin-loaded magnetic nanoparticles of Fe3O4 overcome multidrug resistance and induce apoptosis of K562-n/VCR cells in vivo.
International journal of nanomedicine,
4, 201–208.
https://doi.org/10.2147/ijn.s7287
-
Fang, C., & Zhang, M. (2009). Multifunctional Magnetic Nanoparticles for Medical Imaging Applications.
Journal of materials chemistry,
19, 6258–6266.
https://doi.org/10.1039/b902182e
-
Zhu, Z. J., Ghosh, P. S., Miranda, O. R., Vachet, R. W., & Rotello, V. M. (2008). Multiplexed screening of cellular uptake of gold nanoparticles using laser desorption/ionization mass spectrometry.
Journal of the American Chemical Society,
130(43), 14139–14143.
https://doi.org/10.1021/ja805392f
-
Mullen, D. G., Desai, A. M., Waddell, J. N., Cheng, X. M., Kelly, C. V., McNerny, D. Q., Majoros, I. J., Baker, J. R., Jr, Sander, L. M., Orr, B. G., & Banaszak Holl, M. M. (2008). The implications of stochastic synthesis for the conjugation of functional groups to nanoparticles.
Bioconjugate chemistry,
19(9), 1748–1752.
https://doi.org/10.1021/bc8002106
-
Sun, C., Fang, C., Stephen, Z., Veiseh, O., Hansen, S., Lee, D., Ellenbogen, R. G., Olson, J., & Zhang, M. (2008). Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles.
Nanomedicine (London, England),
3(4), 495–505.
https://doi.org/10.2217/17435889.3.4.495
-
Wu, G., Mikhailovsky, A., Khant, H. A., Fu, C., Chiu, W., & Zasadzinski, J. A. (2008). Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells.
Journal of the American Chemical Society,
130(26), 8175–8177.
https://doi.org/10.1021/ja802656d
-
-
Lee, D., Erigala, V. R., Dasari, M., Yu, J., Dickson, R. M., & Murthy, N. (2008). Detection of hydrogen peroxide with chemiluminescent micelles. International journal of nanomedicine, 3(4), 471–476.