Skip to main content
Home
Publications
Hong ZZ, Lowe J, Jiang J* . Dissecting the mechanisms underlying the substrate recognition and functional regulation of O-GlcNAc cycling enzymes. ACS Chemical Biology (in press ).
Wang A# , Young M# , Jiang J* . The glyco-switch of life: O-GlcNAcylation in cell fate decision. Glycobiology (in press ). (# equal contribution)
Sun F, Wang K, Dong X, Secaira-Morocho H, Hui A, Cai C, Sze J, Low B, Udgata S, Pasch C, Huan T, Deming D, Zhu Q, Jiang J , Fu T. The microbial bile acid metabolite 3-oxo-LCA inhibits colorectal cancer progression. Cancer Research . 2025, online ahead of print.
Dong X, Sun F, Secaira-Morocho H, Hui A, Wang K, Cai C, Udgata S, Low B, Wei S, Chen X, Qi M, Pasch CA, Xu W, Jiang J , Zhu Q, Huan T, Deming DA, Fu T. The dichotomous roles of microbial-modified bile acids 7-oxo-DCA and isoDCA in intestinal tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America . 2024, 121(47): e2317596121.
Hu CW, Wang A, Fan D, Worth M, Chen Z, Huang J, Xie J, Macdonald J, Li L, Jiang J* . OGA mutant aberrantly hydrolyzes O-GlcNAc modification from PDLIM7 to modulate p53 and cytoskeleton in promoting cancer cell malignancy. Proceedings of the National Academy of Sciences of the United States of America . 2024, 121(24): e2320867121. Previous preprint of the manuscript: https://doi.org/10.21203/rs.3.rs-2709128/v1.
Hu CW, Wang K, Jiang J* . The non-catalytic domains of O-GlcNAc cycling enzymes present new opportunities for function-specific control. Current Opinion in Chemical Biology . 2024, 81: 102476. Online ahead of print.
Blankenship CM# , Xie J# , Benz C, Wang A, Ivarsson Y, Jiang J* . Motif-dependent binding on the intervening domain regulates O-GlcNAc transferase. Nature Chemical Biology. 2023, 19(11): 1423-1431. Previous preprint of the manuscript: https://doi.org/10.21203/rs.3.rs-2531412/v1. (# equal contribution)
Hu CW, Xie J, Jiang J* . The emerging roles of protein interactions with O-GlcNAc cycling enzymes in cancer. Cancers . 2022, 14(20), 5135. https://doi.org/10.3390/cancers14205135.
Jiang J* , Williams SJ*. Editorial overview: Protein-carbohydrate complexes and glycosylation: A new age of discovery in the glycosciences. Current Opinion in Structural Biology. 2021 Jun;68:iii-v. doi: 10.1016/j.sbi.2021.03.002.
Kositzke A# , Fan D# , Wang A, Li H, Worth M, Jiang J* . Elucidating the protein substrate recognition of O-GlcNAc transferase (OGT) toward O-GlcNAcase (OGA) using a GlcNAc electrophilic probe. International Journal of Biological Macromolecules. 2020 Dec 18;169:51-59. doi: 10.1016/j.ijbiomac.2020.12.078. Online ahead of print. (# equal contribution)
Blankenship C# , Xie J# , Jiang J* . Nucleocytoplasmic protein glycosylation . Comprehensive Glycoscience , 2nd edition. Available online 30 November 2020. (# equal contribution)
Estevez A# , Zhu D# , Blankenship C, Jiang J* . Molecular interrogation to crack the case of O-GlcNAc. Chemistry–A European Journal . (2020) 26, 12086-12100. (# equal contribution)
Worth M# , Hu CW# , Li H, Fan D, Estevez A, Zhu D, Wang A, Jiang J* . Targeted covalent inhibition of O-GlcNAc transferase in cells. Chemical Communications (2019) 55, 13291-4. (# equal contribution)
Joiner CM, Li H, Jiang J* , Walker S*. Structural characterization of the O-GlcNAc cycling enzymes: insights into substrate recognition and catalytic mechanisms . Current Opinion in Structural Biology (2019) 56, 97-106.
Hu CW, Worth M, Li H, Jiang J* . Chemical and biochemical strategies to explore the substrate recognition of O-GlcNAc-cycling enzymes. Chembiochem (2019) 20, 312-8.
Hu CW# , Worth M# , Fan D# , Li B# , Li H# , Lu L, Zhong X, Lin Z, Wei L, Ge Y, Li L, Jiang J* . Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase. Nature Chemical Biology (2017) 13, 1267-73. (# equal contribution)
Liu F, Ma F, Wang Y, Hao L, Zeng H, Jia C, Wang Y, Liu P, Ong IM, Li B, Chen G, Jiang J , Gong S, Li L, Xu W. PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nature Cell Biology (2017) 19, 1358-70.
Li B# , Li H# , Hu CW, Jiang J* . Structural insights into the substrate binding adaptability and specificity of human O-GlcNAcase . Nature Communications (2017) 8:666. doi: 10.1038/s41467-017-00865-1. (# equal contribution)
Li B, Li H, Lu L, Jiang J* . Structures of human O-GlcNAcase and its complexes reveal a new substrate recognition mode. Nature Structural & Molecular Biology (2017), 24, 362-369. [News and Views, Nat Struct Mol Biol . 2017, 24, 433. ]
Worth M# , Li H# , Jiang J*. Deciphering the functions of protein O-GlcNAcylation with chemistry. ACS Chemical Biology (2017), 12, 326-335. (# equal contribution)
Lu L, Fan D, Hu CW, Worth M, Ma ZX, Jiang J* . Distributive O-GlcNAcylation on the highly repetitive C-terminal domain of RNA polymerase II. Biochemistry (2016), 55, 1149-1158.
Ortiz-Meoz RF, Jiang J , Lazarus MB, Orman M, Janetzko J, Fan C, Duveau DY, Tan ZW, Thomas CJ, Walker S. A small molecule that inhibits OGT activity in cells. ACS Chemical Biology (2015), 10, 1392-1397.
Lazarus MB*, Jiang J* , Kapuria V, Bhuiyan T, Janetzko J, Zandberg WF, Vocadlo DJ, Herr W, Walker S. HCF-1 is cleaved in the active site of O-GlcNAc transferase. (*equal contribution) Science (2013), 342, 1235-1239.
Lazarus, MB*; Jiang, J* ; Gloster, TM; Zandberg, WF; Vocadlo, DJ; Walker, S. Structural snapshots of the reaction coordinate for O-GlcNAc transferase. (*equal contribution) Nature Chemical Biology (2012), 8, 966-968.
Jiang, J* ; Lazarus, MB*; Pasquina, L; Sliz, P; Walker, S. A neutral diphosphate mimic crosslinks the active site of human O-GlcNAc transferase. (*equal contribution) Nature Chemical Biology (2012), 8, 72–77.
Lazarus, MB; Nam, Y; Jiang, J ; Sliz, P; Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature (2011), 469, 564-567.
Jiang, J ; Tetzlaff, CN; Takamatsu, S; Iwatsuki, M; Komatsu, M; Ikeda, H; Cane, DE. Genome mining in Streptomyces avermitilis. A biochemical Baeyer-Villiger reaction and discovery of a new branch of the pentalenolactone family tree. Biochemistry (2009), 48, 6431-6440.
Giglio, S; Jiang, J ; Saint, CP; Cane, DE; Monis, PT. Isolation and characterization of the gene associated with geosmin production in cyanobacteria. Environmental Science & Technology (2008), 42, 8027-8032.
Jiang, J ; Cane, DE. Geosmin biosynthesis. Mechanism of the fragmentation-rearrangement in the conversion of germacradienol to geosmin. Journal of the American Chemical Society (2008), 130, 428-429.
Nawrath, T; Dickschat, JS; Muller, R; Jiang, J ; Cane, DE; Schulz, S. Identification of (8S,9S,10S)-8,10-dimethyl-1-octalin, a key intermediate in the biosynthesis of geosmin in bacteria. Journal of the American Chemical Society (2008), 130, 430-431.
Vedula, SL; Jiang, J ; Zakharian, T; Cane, DE; Christianson, DW. Structural and mechanistic analysis of trichodiene synthase using site-directed mutagenesis: probing the catalytic function of tyrosine-295 and the asparagine-225/serine-229/glutamate-233-Mg2+B motif. Archives of Biochemistry and Biophysics (2008), 469, 184-194.
Jiang, J ; He, X; Cane, DE. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nature Chemical Biology (2007), 3, 711-715.
Jiang, J ; He, X; Cane, DE. Geosmin biosynthesis. Streptomyces coelicolor germacradienol/germacrene D synthase converts farnesyl diphosphate to geosmin. Journal of the American Chemical Society (2006), 128, 8128-8129.
Zhou, C; Jiang, J ; Zhou, Y; Xie, Z; Miao, Q; Wang, Z. Chemoselective carbonyl benzylation mediated by Zn/CdCl2/InCl3 in tap water. Letters in Organic Chemistry (2005), 2, 61-64.
Zha, Z; Qiao, S; Jiang, J ; Wang, Y; Miao, Q; Wang, Z. Barbier-type reaction mediated with tin nano-particles in water. Tetrahedron (2005), 61, 2521-2527.
Zhou, C; Zhou, Y; Jiang, J ; Xie, Z; Wang, Z; Zhang, J; Wu, J; Yin, H. Organometallic reactions in aqueous media: the allylations of carbonyl compounds mediated in Zn/CdSO4 and Zn/SnCl2 bimetal systems . Tetrahedron Letters (2004), 45, 5537-5540.