Abstract
We have investigated poly(amidoamine) (PAMAM) dendrimer interactions with supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers and KB and Rat2 cell membranes using atomic force microscopy (AFM), enzyme assays, flow cell cytometry, and fluorescence microscopy. Amine-terminated generation 7 (G7) PAMAM dendrimers (10−100 nM) were observed to form holes of 15−40 nm in diameter in aqueous, supported lipid bilayers. G5 amine-terminated dendrimers did not initiate hole formation but expanded holes at existing defects. Acetamide-terminated G5 PAMAM dendrimers did not cause hole formation in this concentration range. The interactions between PAMAM dendrimers and cell membranes were studied in vitro using KB and Rat 2 cell lines. Neither G5 amine- nor acetamide-terminated PAMAM dendrimers were cytotoxic up to a 500 nM concentration. However, the dose dependent release of the cytoplasmic proteins lactate dehydrogenase (LDH) and luciferase (Luc) indicated that the presence of the amine-terminated G5 PAMAM dendrimer decreased the integrity of the cell membrane. In contrast, the presence of acetamide-terminated G5 PAMAM dendrimer had little effect on membrane integrity up to a 500 nM concentration. The induction of permeability caused by the amine-terminated dendrimers was not permanent, and leaking of cytosolic enzymes returned to normal levels upon removal of the dendrimers. The mechanism of how PAMAM dendrimers altered cells was investigated using fluorescence microscopy, LDH and Luc assays, and flow cytometry. This study revealed that (1) a hole formation mechanism is consistent with the observations of dendrimer internalization, (2) cytosolic proteins can diffuse out of the cell via these holes, and (3) dye molecules can be detected diffusing into the cell or out of the cell through the same membrane holes. Diffusion of dendrimers through holes is sufficient to explain the uptake of G5 amine-terminated PAMAM dendrimers into cells and is consistent with the lack of uptake of G5 acetamide-terminated PAMAM dendrimers.
Cited by
This article is cited by 135 publications-
Cruz, A., Barbosa, J., Antunes, P., Bonifácio, V. D. B., & Pinto, S. N. (2023). A Glimpse into Dendrimers Integration in Cancer Imaging and Theranostics. International journal of molecular sciences, 24(6), 5430. https://doi.org/10.3390/ijms24065430
-
de Macedo, E. F., Santos, N. S., Nascimento, L. S., Mathey, R., Brenet, S., de Moura, M. S., Hou, Y., & Tada, D. B. (2022). Interaction between Nanoparticles, Membranes and Proteins: A Surface Plasmon Resonance Study. International journal of molecular sciences, 24(1), 591. https://doi.org/10.3390/ijms24010591
-
Xing, Z., Xue, J., Ma, X., Han, C., Wang, Z., Luo, S., Wang, C., Dong, L., & Zhang, J. (2022). Intracellular mRNA phase separation induced by cationic polymers for tumor immunotherapy. Journal of nanobiotechnology, 20(1), 442. https://doi.org/10.1186/s12951-022-01647-8
-
Nakamura, M., Nakamura, J., Mochizuki, C., Kuroda, C., Kato, S., Haruta, T., Kakefuda, M., Sato, S., Tamanoi, F., & Sugino, N. (2022). Analysis of cell-nanoparticle interactions and imaging of in vitro labeled cells showing barcorded endosomes using fluorescent thiol-organosilica nanoparticles surface-functionalized with polyethyleneimine. Nanoscale advances, 4(12), 2682–2703. https://doi.org/10.1039/d1na00839k
-
Chang, P., Prestidge, C. A., & Bremmell, K. E. (2022). PAMAM versus PEI complexation for siRNA delivery: interaction with model lipid membranes and cellular uptake. Pharmaceutical research, 10.1007/s11095-022-03229-7. Advance online publication. https://doi.org/10.1007/s11095-022-03229-7
-
Song, J., Jung, K. J., Yang, M. J., Kim, W., Lee, B. S., Choe, S. K., Kim, S. J., & Hwang, J. H. (2022). Disruption of Membrane Integrity as a Molecular Initiating Event Determines the Toxicity of Polyhexamethylene Guanidine Phosphate Depending on the Routes of Exposure. International journal of molecular sciences, 23(6), 3289. https://doi.org/10.3390/ijms23063289
-
Rawding, P. A., Bu, J., Wang, J., Kim, D. W., Drelich, A. J., Kim, Y., & Hong, S. (2022). Dendrimers for cancer immunotherapy: Avidity-based drug delivery vehicles for effective anti-tumor immune response. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 14(2), e1752. https://doi.org/10.1002/wnan.1752
-
Goda T. (2021). Chemically Induced pH Perturbations for Analyzing Biological Barriers Using Ion-Sensitive Field-Effect Transistors. Sensors (Basel, Switzerland), 21(21), 7277. https://doi.org/10.3390/s21217277
-
Marschall A. (2021). Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy, 1–29. Advance online publication. https://doi.org/10.1007/s40259-021-00500-y
-
Elmi, T., Ardestani, M. S., Motevalian, M., Hesari, A. K., Hamzeh, M. S., Zamani, Z., & Tabatabaie, F. (2021). Antiplasmodial Effect of Nano Dendrimer G2 Loaded with Chloroquine in Mice Infected with Plasmodium berghei. Acta parasitologica, 10.1007/s11686-021-00459-4. Advance online publication. https://doi.org/10.1007/s11686-021-00459-4
-
Filipczak, N., Yalamarty, S., Li, X., Parveen, F., & Torchilin, V. (2021). Developments in Treatment Methodologies Using Dendrimers for Infectious Diseases. Molecules (Basel, Switzerland), 26(11), 3304. https://doi.org/10.3390/molecules26113304
-
Zhang, J., Li, M., Wang, M., Xu, H., Wang, Z., Li, Y., Ding, B., & Gao, J. (2021). Effects of the surface charge of polyamidoamine dendrimers on cellular exocytosis and the exocytosis mechanism in multidrug-resistant breast cancer cells. Journal of nanobiotechnology, 19(1), 135. https://doi.org/10.1186/s12951-021-00881-w
-
Gökçe, B. B., Boran, T., Emlik Çalık, F., Özhan, G., Sanyal, R., & Güngör, S. (2021). Dermal delivery and follicular targeting of adapalene using PAMAM dendrimers. Drug delivery and translational research, 11(2), 626–646. https://doi.org/10.1007/s13346-021-00933-6
-
Banerjee, A., Tam, A., & Dutt, M. (2020). Dendronized vesicles: formation, self-organization of dendron-grafted amphiphiles and stability. Nanoscale advances, 3(3), 725–737. https://doi.org/10.1039/d0na00773k
-
Jebbawi, R., Fruchon, S., Turrin, C. O., Blanzat, M., & Poupot, R. (2020). Supramolecular and Macromolecular Matrix Nanocarriers for Drug Delivery in Inflammation-Associated Skin Diseases. Pharmaceutics, 12(12), 1224. https://doi.org/10.3390/pharmaceutics12121224
-
Jérôme, V., Synatschke, C. V., & Freitag, R. (2020). Transient Destabilization of Biological Membranes Contributes to the Superior Performance of Star-Shaped PDMAEMA in Delivering pDNA. ACS omega, 5(41), 26640–26654. https://doi.org/10.1021/acsomega.0c03367
-
Liang, H., Yan, Y., Wu, J., Ge, X., Wei, L., Liu, L., & Chen, Y. (2020). Topical nanoparticles interfering with the DNA-LL37 complex to alleviate psoriatic inflammation in mice and monkeys. Science advances, 6(31), eabb5274. https://doi.org/10.1126/sciadv.abb5274
-
Xiao, H., Wang, R., Dong, L., Cui, Y., Chen, S., Sun, H., Ma, G., Gao, D., & Wang, L. (2019). Biocompatible Dendrimer-Encapsulated Palladium Nanoparticles for Oxidation of Morin. ACS omega, 4(20), 18685–18691. https://doi.org/10.1021/acsomega.9b02606
-
Marcinkowska, M., Stanczyk, M., Janaszewska, A., Sobierajska, E., Chworos, A., & Klajnert-Maculewicz, B. (2019). Multicomponent Conjugates of Anticancer Drugs and Monoclonal Antibody with PAMAM Dendrimers to Increase Efficacy of HER-2 Positive Breast Cancer Therapy. Pharmaceutical research, 36(11), 154. https://doi.org/10.1007/s11095-019-2683-7
-
Hołota, M., Magiera, J., Michlewska, S., Kubczak, M., Del Olmo, N. S., García-Gallego, S., Ortega, P., de la Mata, F. J., Ionov, M., & Bryszewska, M. (2019). In Vitro Anticancer Properties of Copper Metallodendrimers. Biomolecules, 9(4), 155. https://doi.org/10.3390/biom9040155
-
Ilinskaya, A. N., Shah, A., Enciso, A. E., Chan, K. C., Kaczmarczyk, J. A., Blonder, J., Simanek, E. E., & Dobrovolskaia, M. A. (2019). Nanoparticle physicochemical properties determine the activation of intracellular complement. Nanomedicine : nanotechnology, biology, and medicine, 17, 266–275. https://doi.org/10.1016/j.nano.2019.02.002
-
Dukenbayev, K., Korolkov, I. V., Tishkevich, D. I., Kozlovskiy, A. L., Trukhanov, S. V., Gorin, Y. G., Shumskaya, E. E., Kaniukov, E. Y., Vinnik, D. A., Zdorovets, M. V., Anisovich, M., Trukhanov, A. V., Tosi, D., & Molardi, C. (2019). Fe₃O₄ Nanoparticles for Complex Targeted Delivery and Boron Neutron Capture Therapy. Nanomaterials (Basel, Switzerland), 9(4), 494. https://doi.org/10.3390/nano9040494
-
Maurya, A., Singh, A. K., Mishra, G., Kumari, K., Rai, A., Sharma, B., Kulkarni, G. T., & Awasthi, R. (2019). Strategic use of nanotechnology in drug targeting and its consequences on human health: A focused review. Interventional medicine & applied science, 11(1), 38–54. https://doi.org/10.1556/1646.11.2019.04
-
Amani, A., Kabiri, T., Shafiee, S., & Hamidi, A. (2019). Preparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems. Iranian journal of pharmaceutical research : IJPR, 18(1), 125–141.
-
Zhang, M., Zhu, J., Zheng, Y., Guo, R., Wang, S., Mignani, S., Caminade, A. M., Majoral, J. P., & Shi, X. (2018). Doxorubicin-Conjugated PAMAM Dendrimers for pH-Responsive Drug Release and Folic Acid-Targeted Cancer Therapy. Pharmaceutics, 10(3), 162. https://doi.org/10.3390/pharmaceutics10030162
-
Wang, B., Sun, Y., Davis, T. P., Ke, P. C., Wu, Y., & Ding, F. (2018). Understanding Effects of PAMAM Dendrimer Size and Surface Chemistry on Serum Protein Binding with Discrete Molecular Dynamics Simulations. ACS sustainable chemistry & engineering, 6(9), 11704–11715. https://doi.org/10.1021/acssuschemeng.8b01959
-
Monroe, M., Flexner, C., & Cui, H. (2018). Harnessing nanostructured systems for improved treatment and prevention of HIV disease. Bioengineering & translational medicine, 3(2), 102–123. https://doi.org/10.1002/btm2.10096
-
Li, J., Jin, K., Mushnoori, S. C., & Dutt, M. (2018). Mechanisms underlying interactions between PAMAM dendron-grafted surfaces with DPPC membranes. RSC advances, 8(44), 24982–24992. https://doi.org/10.1039/c8ra03742f
-
Somani, S., Laskar, P., Altwaijry, N., Kewcharoenvong, P., Irving, C., Robb, G., Pickard, B. S., & Dufès, C. (2018). PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells. Scientific reports, 8(1), 9410. https://doi.org/10.1038/s41598-018-27400-6
-
Merzel, R. L., Orr, B. G., & Banaszak Holl, M. M. (2018). Distributions: The Importance of the Chemist’s Molecular View for Biological Materials. Biomacromolecules, 19(5), 1469–1484. https://doi.org/10.1021/acs.biomac.8b00375
-
Naha, P. C., Mukherjee, S. P., & Byrne, H. J. (2018). Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers. International journal of environmental research and public health, 15(2), 338. https://doi.org/10.3390/ijerph15020338
-
Lin, J., Hu, W., Gao, F., Qin, J., Peng, C., & Lu, X. (2018). Folic acid-modified diatrizoic acid-linked dendrimer-entrapped gold nanoparticles enable targeted CT imaging of human cervical cancer. Journal of Cancer, 9(3), 564–577. https://doi.org/10.7150/jca.19786
-
Vidal, F., Vásquez, P., Cayumán, F. R., Díaz, C., Fuentealba, J., Aguayo, L. G., Yévenes, G. E., Alderete, J., & Guzmán, L. (2017). Prevention of Synaptic Alterations and Neurotoxic Effects of PAMAM Dendrimers by Surface Functionalization. Nanomaterials (Basel, Switzerland), 8(1), 7. https://doi.org/10.3390/nano8010007
-
Hall, A., Lächelt, U., Bartek, J., Wagner, E., & Moghimi, S. M. (2017). Polyplex Evolution: Understanding Biology, Optimizing Performance. Molecular therapy : the journal of the American Society of Gene Therapy, 25(7), 1476–1490. https://doi.org/10.1016/j.ymthe.2017.01.024
-
Gholami, M., Mohammadi, R., Arzanlou, M., Akbari Dourbash, F., Kouhsari, E., Majidi, G., Mohseni, S. M., & Nazari, S. (2017). In vitro antibacterial activity of poly (amidoamine)-G7 dendrimer. BMC infectious diseases, 17(1), 395. https://doi.org/10.1186/s12879-017-2513-7
-
Yan, C., Gu, J., Lv, Y., Shi, W., & Jing, H. (2017). Improved intestinal absorption of water-soluble drugs by acetylation of G2 PAMAM dendrimer nanocomplexes in rat. Drug delivery and translational research, 7(3), 408–415. https://doi.org/10.1007/s13346-017-0373-8
-
Yamini, G., Kalu, N., & Nestorovich, E. M. (2016). Impact of Dendrimer Terminal Group Chemistry on Blockage of the Anthrax Toxin Channel: A Single Molecule Study. Toxins, 8(11), 337. https://doi.org/10.3390/toxins8110337
-
Lara-Cruz, C., Jiménez-Salazar, J. E., Ramón-Gallegos, E., Damian-Matsumura, P., & Batina, N. (2016). Increasing roughness of the human breast cancer cell membrane through incorporation of gold nanoparticles. International journal of nanomedicine, 11, 5149–5161. https://doi.org/10.2147/IJN.S108768
-
Jiang, X., Bugno, J., Hu, C., Yang, Y., Herold, T., Qi, J., Chen, P., Gurbuxani, S., Arnovitz, S., Strong, J., Ferchen, K., Ulrich, B., Weng, H., Wang, Y., Huang, H., Li, S., Neilly, M. B., Larson, R. A., Le Beau, M. M., Bohlander, S. K., … Chen, J. (2016). Eradication of Acute Myeloid Leukemia with FLT3 Ligand-Targeted miR-150 Nanoparticles. Cancer research, 76(15), 4470–4480. https://doi.org/10.1158/0008-5472.CAN-15-2949
-
Figueroa, E. R., Yan, J. S., Chamberlain-Simon, N. K., Lin, A. Y., Foster, A. E., & Drezek, R. A. (2016). Systematically probing the bottom-up synthesis of AuPAMAM conjugates for enhanced transfection efficiency. Journal of nanobiotechnology, 14, 24. https://doi.org/10.1186/s12951-016-0178-9
-
Uram, Ł., Szuster, M., Filipowicz, A., Gargasz, K., Wołowiec, S., & Wałajtys-Rode, E. (2015). Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin-pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro. International journal of nanomedicine, 10, 5647–5661. https://doi.org/10.2147/IJN.S87307
-
Leroueil, P. R., DiMaggio, S., Leistra, A. N., Blanchette, C. D., Orme, C., Sinniah, K., Orr, B. G., & Banaszak Holl, M. M. (2015). Characterization of Folic Acid and Poly(amidoamine) Dendrimer Interactions with Folate Binding Protein: A Force-Pulling Study. The journal of physical chemistry. B, 119(35), 11506–11512. https://doi.org/10.1021/acs.jpcb.5b05391
-
Nanaware-Kharade, N., Thakkar, S., Gonzalez, G. A., 3rd, & Peterson, E. C. (2015). A Nanotechnology-Based Platform for Extending the Pharmacokinetic and Binding Properties of Anti-methamphetamine Antibody Fragments. Scientific reports, 5, 12060. https://doi.org/10.1038/srep12060
-
Bugno, J., Hsu, H. J., & Hong, S. (2015). Recent advances in targeted drug delivery approaches using dendritic polymers. Biomaterials science, 3(7), 1025–1034. https://doi.org/10.1039/c4bm00351a
-
Vaidyanathan, S., Anderson, K. B., Merzel, R. L., Jacobovitz, B., Kaushik, M. P., Kelly, C. N., van Dongen, M. A., Dougherty, C. A., Orr, B. G., & Banaszak Holl, M. M. (2015). Quantitative Measurement of Cationic Polymer Vector and Polymer-pDNA Polyplex Intercalation into the Cell Plasma Membrane. ACS nano, 9(6), 6097–6109. https://doi.org/10.1021/acsnano.5b01263
-
Saraswathy, M., Knight, G. T., Pilla, S., Ashton, R. S., & Gong, S. (2015). Multifunctional drug nanocarriers formed by cRGD-conjugated βCD-PAMAM-PEG for targeted cancer therapy. Colloids and surfaces. B, Biointerfaces, 126, 590–597. https://doi.org/10.1016/j.colsurfb.2014.12.042
-
Bugno, J., Hsu, H. J., & Hong, S. (2015). Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: potential nanocarriers for improved cancer targeting. Journal of drug targeting, 23(7-8), 642–650. https://doi.org/10.3109/1061186X.2015.1052077
-
Tan, J. K., Choi, J. L., Wei, H., Schellinger, J. G., & Pun, S. H. (2015). Reducible, dibromomaleimide-linked polymers for gene delivery. Biomaterials science, 3(1), 112–120. https://doi.org/10.1039/c4bm00240g
-
Gifford, J. C., Bresee, J., Carter, C. J., Wang, G., Melander, R. J., Melander, C., & Feldheim, D. L. (2014). Thiol-modified gold nanoparticles for the inhibition of Mycobacterium smegmatis. Chemical communications (Cambridge, England), 50(100), 15860–15863. https://doi.org/10.1039/c4cc06236a
-
Falanga, A., Tarallo, R., Carberry, T., Galdiero, M., Weck, M., & Galdiero, S. (2014). Elucidation of the interaction mechanism with liposomes of gH625-peptide functionalized dendrimers. PloS one, 9(11), e112128. https://doi.org/10.1371/journal.pone.0112128
-
Hsu, H. J., Sen, S., Pearson, R. M., Uddin, S., Král, P., & Hong, S. (2014). Poly(ethylene glycol) Corona Chain Length Controls End-Group-Dependent Cell Interactions of Dendron Micelles. Macromolecules, 47(19), 6911–6918. https://doi.org/10.1021/ma501258c
-
Khatri, S., Das, N. G., & Das, S. K. (2014). Effect of methotrexate conjugated PAMAM dendrimers on the viability of MES-SA uterine cancer cells. Journal of pharmacy & bioallied sciences, 6(4), 297–302. https://doi.org/10.4103/0975-7406.142963
-
Sukthankar, P., Avila, L. A., Whitaker, S. K., Iwamoto, T., Morgenstern, A., Apostolidis, C., Liu, K., Hanzlik, R. P., Dadachova, E., & Tomich, J. M. (2014). Branched amphiphilic peptide capsules: cellular uptake and retention of encapsulated solutes. Biochimica et biophysica acta, 1838(9), 2296–2305. https://doi.org/10.1016/j.bbamem.2014.02.005
-
van Kan-Davelaar, H. E., van Hest, J. C., Cornelissen, J. J., & Koay, M. S. (2014). Using viruses as nanomedicines. British journal of pharmacology, 171(17), 4001–4009. https://doi.org/10.1111/bph.12662
-
Mu, Q., Jiang, G., Chen, L., Zhou, H., Fourches, D., Tropsha, A., & Yan, B. (2014). Chemical basis of interactions between engineered nanoparticles and biological systems. Chemical reviews, 114(15), 7740–7781. https://doi.org/10.1021/cr400295a
-
Thoma, L. M., Boles, B. R., & Kuroda, K. (2014). Cationic methacrylate polymers as topical antimicrobial agents against Staphylococcus aureus nasal colonization. Biomacromolecules, 15(8), 2933–2943. https://doi.org/10.1021/bm500557d
-
Förstner, P., Bayer, F., Kalu, N., Felsen, S., Förtsch, C., Aloufi, A., Ng, D. Y., Weil, T., Nestorovich, E. M., & Barth, H. (2014). Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors. Biomacromolecules, 15(7), 2461–2474. https://doi.org/10.1021/bm500328v
-
Ilinskaya, A. N., Man, S., Patri, A. K., Clogston, J. D., Crist, R. M., Cachau, R. E., McNeil, S. E., & Dobrovolskaia, M. A. (2014). Inhibition of phosphoinositol 3 kinase contributes to nanoparticle-mediated exaggeration of endotoxin-induced leukocyte procoagulant activity. Nanomedicine (London, England), 9(9), 1311–1326. https://doi.org/10.2217/nnm.13.137
-
Adams, P. G., Lamoureux, L., Swingle, K. L., Mukundan, H., & Montaño, G. A. (2014). Lipopolysaccharide-induced dynamic lipid membrane reorganization: tubules, perforations, and stacks. Biophysical journal, 106(11), 2395–2407. https://doi.org/10.1016/j.bpj.2014.04.016
-
Pryor, J. B., Harper, B. J., & Harper, S. L. (2014). Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish. International journal of nanomedicine, 9, 1947–1956. https://doi.org/10.2147/IJN.S60220
-
Rothschild S. I. (2014). microRNA therapies in cancer. Molecular and cellular therapies, 2, 7. https://doi.org/10.1186/2052-8426-2-7
-
Vaidyanathan, S., Orr, B. G., & Banaszak Holl, M. M. (2014). Detergent induction of HEK 293A cell membrane permeability measured under quiescent and superfusion conditions using whole cell patch clamp. The journal of physical chemistry. B, 118(8), 2112–2123. https://doi.org/10.1021/jp4124315
-
Liu, Y., Zhang, Z., Zhang, Q., Baker, G. L., & Worden, R. M. (2014). Biomembrane disruption by silica-core nanoparticles: effect of surface functional group measured using a tethered bilayer lipid membrane. Biochimica et biophysica acta, 1838(1 Pt B), 429–437. https://doi.org/10.1016/j.bbamem.2013.09.007
-
Zhang, Y., Wang, Z., & Gemeinhart, R. A. (2013). Progress in microRNA delivery. Journal of controlled release : official journal of the Controlled Release Society, 172(3), 962–974. https://doi.org/10.1016/j.jconrel.2013.09.015
-
Labieniec-Watala, M., Karolczak, K., Siewiera, K., & Watala, C. (2013). The Janus face of PAMAM dendrimers used to potentially cure nonenzymatic modifications of biomacromolecules in metabolic disorders-a critical review of the pros and cons. Molecules (Basel, Switzerland), 18(11), 13769–13811. https://doi.org/10.3390/molecules181113769
-
Sizovs, A., Xue, L., Tolstyka, Z. P., Ingle, N. P., Wu, Y., Cortez, M., & Reineke, T. M. (2013). Poly(trehalose): sugar-coated nanocomplexes promote stabilization and effective polyplex-mediated siRNA delivery. Journal of the American Chemical Society, 135(41), 15417–15424. https://doi.org/10.1021/ja404941p
-
Lu, Y., Slomberg, D. L., Shah, A., & Schoenfisch, M. H. (2013). Nitric oxide-releasing amphiphilic poly(amidoamine) (PAMAM) dendrimers as antibacterial agents. Biomacromolecules, 14(10), 3589–3598. https://doi.org/10.1021/bm400961r
-
Zhao, B., Wang, X. Q., Wang, X. Y., Zhang, H., Dai, W. B., Wang, J., Zhong, Z. L., Wu, H. N., & Zhang, Q. (2013). Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure. Particle and fibre toxicology, 10, 47. https://doi.org/10.1186/1743-8977-10-47
-
Rattan, R., Vaidyanathan, S., Wu, G. S., Shakya, A., Orr, B. G., & Banaszak Holl, M. M. (2013). Polyplex-induced cytosolic nuclease activation leads to differential transgene expression. Molecular pharmaceutics, 10(8), 3013–3022. https://doi.org/10.1021/mp400103f
-
Winnicka, K., Wroblewska, M., Wieczorek, P., Sacha, P. T., & Tryniszewska, E. A. (2013). The effect of PAMAM dendrimers on the antibacterial activity of antibiotics with different water solubility. Molecules (Basel, Switzerland), 18(7), 8607–8617. https://doi.org/10.3390/molecules18078607
-
Polcyn, P., Zielinska, P., Zimnicka, M., Troć, A., Kalicki, P., Solecka, J., Laskowska, A., & Urbanczyk-Lipkowska, Z. (2013). Novel antimicrobial peptide dendrimers with amphiphilic surface and their interactions with phospholipids–insights from mass spectrometry. Molecules (Basel, Switzerland), 18(6), 7120–7144. https://doi.org/10.3390/molecules18067120
-
Herd, H., Daum, N., Jones, A. T., Huwer, H., Ghandehari, H., & Lehr, C. M. (2013). Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS nano, 7(3), 1961–1973. https://doi.org/10.1021/nn304439f
-
Opitz, A. W., Czymmek, K. J., Wickstrom, E., & Wagner, N. J. (2013). Uptake, efflux, and mass transfer coefficient of fluorescent PAMAM dendrimers into pancreatic cancer cells. Biochimica et biophysica acta, 1828(2), 294–301. https://doi.org/10.1016/j.bbamem.2012.09.016
-
Fichter, K. M., Ingle, N. P., McLendon, P. M., & Reineke, T. M. (2013). Polymeric nucleic acid vehicles exploit active interorganelle trafficking mechanisms. ACS nano, 7(1), 347–364. https://doi.org/10.1021/nn304218q
-
Pearson, R. M., Patra, N., Hsu, H. J., Uddin, S., Král, P., & Hong, S. (2013). Positively Charged Dendron Micelles Display Negligible Cellular Interactions. ACS macro letters, 2(1), 77–81. https://doi.org/10.1021/mz300533w
-
Li, K., Wen, S., Larson, A. C., Shen, M., Zhang, Z., Chen, Q., Shi, X., & Zhang, G. (2013). Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer. International journal of nanomedicine, 8, 2589–2600. https://doi.org/10.2147/IJN.S46177
-
Moghadam, B. Y., Hou, W. C., Corredor, C., Westerhoff, P., & Posner, J. D. (2012). Role of nanoparticle surface functionality in the disruption of model cell membranes. Langmuir : the ACS journal of surfaces and colloids, 28(47), 16318–16326. https://doi.org/10.1021/la302654s
-
Sandoval, S., Yang, J., Alfaro, J. G., Liberman, A., Makale, M., Chiang, C. E., Schuller, I. K., Kummel, A. C., & Trogler, W. C. (2012). Europium Doped TiO(2) Hollow Nanoshells: Two-Photon Imaging of Cell Binding. Chemistry of materials : a publication of the American Chemical Society, 24(21), 4222–4230. https://doi.org/10.1021/cm302642g
-
Gibney, K. A., Sovadinova, I., Lopez, A. I., Urban, M., Ridgway, Z., Caputo, G. A., & Kuroda, K. (2012). Poly(ethylene imine)s as antimicrobial agents with selective activity. Macromolecular bioscience, 12(9), 1279–1289. https://doi.org/10.1002/mabi.201200052
-
Yang, Y., Sunoqrot, S., Stowell, C., Ji, J., Lee, C. W., Kim, J. W., Khan, S. A., & Hong, S. (2012). Effect of size, surface charge, and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. Biomacromolecules, 13(7), 2154–2162. https://doi.org/10.1021/bm300545b
-
Mullen, D. G., Desai, A., van Dongen, M. A., Barash, M., Baker, J. R., Jr, & Banaszak Holl, M. M. (2012). Best practices for purification and characterization of PAMAM dendrimer. Macromolecules, 45(12), 5316–5320. https://doi.org/10.1021/ma300485p
-
Jones, C. F., Campbell, R. A., Franks, Z., Gibson, C. C., Thiagarajan, G., Vieira-de-Abreu, A., Sukavaneshvar, S., Mohammad, S. F., Li, D. Y., Ghandehari, H., Weyrich, A. S., Brooks, B. D., & Grainger, D. W. (2012). Cationic PAMAM dendrimers disrupt key platelet functions. Molecular pharmaceutics, 9(6), 1599–1611. https://doi.org/10.1021/mp2006054
-
Sunoqrot, S., Bae, J. W., Pearson, R. M., Shyu, K., Liu, Y., Kim, D. H., & Hong, S. (2012). Temporal control over cellular targeting through hybridization of folate-targeted dendrimers and PEG-PLA nanoparticles. Biomacromolecules, 13(4), 1223–1230. https://doi.org/10.1021/bm300316n
-
Wang, H., Zheng, L., Guo, R., Peng, C., Shen, M., Shi, X., & Zhang, G. (2012). Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging. Nanoscale research letters, 7(1), 190. https://doi.org/10.1186/1556-276X-7-190
-
Dobrovolskaia, M. A., Patri, A. K., Simak, J., Hall, J. B., Semberova, J., De Paoli Lacerda, S. H., & McNeil, S. E. (2012). Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Molecular pharmaceutics, 9(3), 382–393. https://doi.org/10.1021/mp200463e
-
Ziemba, B., Matuszko, G., Bryszewska, M., & Klajnert, B. (2012). Influence of dendrimers on red blood cells. Cellular & molecular biology letters, 17(1), 21–35. https://doi.org/10.2478/s11658-011-0033-9
-
Parker-Esquivel, B., Flores, K. J., Louiselle, D., Craig, M., Dong, L., Garrad, R., Ghosh, K., Wanekaya, A., Glaspell, G., & DeLong, R. K. (2012). Association of poly I:C RNA and plasmid DNA onto MnO nanorods mediated by PAMAM. Langmuir : the ACS journal of surfaces and colloids, 28(8), 3860–3870. https://doi.org/10.1021/la203998r
-
Sharma, A., Madhunapantula, S. V., & Robertson, G. P. (2012). Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert opinion on drug metabolism & toxicology, 8(1), 47–69. https://doi.org/10.1517/17425255.2012.637916
-
Wijagkanalan, W., Kawakami, S., & Hashida, M. (2011). Designing dendrimers for drug delivery and imaging: pharmacokinetic considerations. Pharmaceutical research, 28(7), 1500–1519. https://doi.org/10.1007/s11095-010-0339-8
-
Yang, J., Sandoval, S., Alfaro, J. G., Aschemeyer, S., Liberman, A., Martin, D. T., Makale, M., Kummel, A. C., & Trogler, W. C. (2011). Red-luminescent europium (III) doped silica nanoshells: synthesis, characterization, and their interaction with HeLa cells. Journal of biomedical optics, 16(6), 066012. https://doi.org/10.1117/1.3593003
-
Ting, C. L., Appelö, D., & Wang, Z. G. (2011). Minimum energy path to membrane pore formation and rupture. Physical review letters, 106(16), 168101. https://doi.org/10.1103/PhysRevLett.106.168101
-
Mullen, D. G., McNerny, D. Q., Desai, A., Cheng, X. M., Dimaggio, S. C., Kotlyar, A., Zhong, Y., Qin, S., Kelly, C. V., Thomas, T. P., Majoros, I., Orr, B. G., Baker, J. R., & Banaszak Holl, M. M. (2011). Design, synthesis, and biological functionality of a dendrimer-based modular drug delivery platform. Bioconjugate chemistry, 22(4), 679–689. https://doi.org/10.1021/bc100360v
-
Sunoqrot, S., Bae, J. W., Jin, S. E., M Pearson, R., Liu, Y., & Hong, S. (2011). Kinetically controlled cellular interactions of polymer-polymer and polymer-liposome nanohybrid systems. Bioconjugate chemistry, 22(3), 466–474. https://doi.org/10.1021/bc100484t
-
Ting, C. L., & Wang, Z. G. (2011). Interactions of a charged nanoparticle with a lipid membrane: implications for gene delivery. Biophysical journal, 100(5), 1288–1297. https://doi.org/10.1016/j.bpj.2010.11.042
-
Yacobi, N. R., Fazllolahi, F., Kim, Y. H., Sipos, A., Borok, Z., Kim, K. J., & Crandall, E. D. (2011). Nanomaterial interactions with and trafficking across the lung alveolar epithelial barrier: implications for health effects of air-pollution particles. Air quality, atmosphere, & health, 4(1), 65–78. https://doi.org/10.1007/s11869-010-0098-z
-
Wang, S., Wen, S., Shen, M., Guo, R., Cao, X., Wang, J., & Shi, X. (2011). Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay. International journal of nanomedicine, 6, 3449–3459. https://doi.org/10.2147/IJN.S27166
-
Jin, S. E., Bae, J. W., & Hong, S. (2010). Multiscale observation of biological interactions of nanocarriers: from nano to macro. Microscopy research and technique, 73(9), 813–823. https://doi.org/10.1002/jemt.20847
-
Mullen, D. G., Borgmeier, E. L., Fang, M., McNerny, D. Q., Desai, A., Baker, J. R., Jr, Orr, B. G., & Holl, M. M. (2010). Effect of Mass Transport in the Synthesis of Partially Acetylated Dendrimer: Implications for Functional Ligand-Nanoparticle Distributions. Macromolecules, 43(16), 6577–6587. https://doi.org/10.1021/ma100663c
-
Chen, A. M., Taratula, O., Wei, D., Yen, H. I., Thomas, T., Thomas, T. J., Minko, T., & He, H. (2010). Labile catalytic packaging of DNA/siRNA: control of gold nanoparticles “out” of DNA/siRNA complexes. ACS nano, 4(7), 3679–3688. https://doi.org/10.1021/nn901796n
-
Smith, P. E., Brender, J. R., Dürr, U. H., Xu, J., Mullen, D. G., Banaszak Holl, M. M., & Ramamoorthy, A. (2010). Solid-state NMR reveals the hydrophobic-core location of poly(amidoamine) dendrimers in biomembranes. Journal of the American Chemical Society, 132(23), 8087–8097. https://doi.org/10.1021/ja101524z
-
Prevette, L. E., Mullen, D. G., & Holl, M. M. (2010). Polycation-induced cell membrane permeability does not enhance cellular uptake or expression efficiency of delivered DNA. Molecular pharmaceutics, 7(3), 870–883. https://doi.org/10.1021/mp100027g
-
Stevens, E. V., Carpenter, A. W., Shin, J. H., Liu, J., Der, C. J., & Schoenfisch, M. H. (2010). Nitric oxide-releasing silica nanoparticle inhibition of ovarian cancer cell growth. Molecular pharmaceutics, 7(3), 775–785. https://doi.org/10.1021/mp9002865
-
McNerny, D. Q., Leroueil, P. R., & Baker, J. R. (2010). Understanding specific and nonspecific toxicities: a requirement for the development of dendrimer-based pharmaceuticals. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2(3), 249–259. https://doi.org/10.1002/wnan.79
-
Qi, R., Mullen, D. G., Baker, J. R., & Holl, M. M. (2010). The mechanism of polyplex internalization into cells: testing the GM1/caveolin-1 lipid raft mediated endocytosis pathway. Molecular pharmaceutics, 7(1), 267–279. https://doi.org/10.1021/mp900241t
-
Shi, X., Lee, I., Chen, X., Shen, M., Xiao, S., Zhu, M., Baker, J. R., & Wang, S. H. (2010). Influence of dendrimer surface charge on the bioactivity of 2-methoxyestradiol complexed with dendrimers. Soft matter, 6(11), 2539–2545. https://doi.org/10.1039/b925274f
-
Sizovs, A., McLendon, P. M., Srinivasachari, S., & Reineke, T. M. (2010). Carbohydrate polymers for nonviral nucleic acid delivery. Topics in current chemistry, 296, 131–190. https://doi.org/10.1007/128_2010_68
-
Thomas, T. P., Majoros, I., Kotlyar, A., Mullen, D., Holl, M. M., & Baker, J. R., Jr (2009). Cationic poly(amidoamine) dendrimer induces lysosomal apoptotic pathway at therapeutically relevant concentrations. Biomacromolecules, 10(12), 3207–3214. https://doi.org/10.1021/bm900683r
-
Lee, H., & Larson, R. G. (2009). Molecular dynamics study of the structure and interparticle interactions of polyethylene glycol-conjugated PAMAM dendrimers. The journal of physical chemistry. B, 113(40), 13202–13207. https://doi.org/10.1021/jp906497e
-
Lopez, A. I., Reins, R. Y., McDermott, A. M., Trautner, B. W., & Cai, C. (2009). Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Molecular bioSystems, 5(10), 1148–1156. https://doi.org/10.1039/b904746h
-
Peetla, C., Stine, A., & Labhasetwar, V. (2009). Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Molecular pharmaceutics, 6(5), 1264–1276. https://doi.org/10.1021/mp9000662
-
Guo, D., Wu, C., Li, J., Guo, A., Li, Q., Jiang, H., Chen, B., & Wang, X. (2009). Synergistic Effect of Functionalized Nickel Nanoparticles and Quercetin on Inhibition of the SMMC-7721 Cells Proliferation. Nanoscale research letters, 4(12), 1395–1402. https://doi.org/10.1007/s11671-009-9411-x
-
Hong, S., Rattan, R., Majoros, I. J., Mullen, D. G., Peters, J. L., Shi, X., Bielinska, A. U., Blanco, L., Orr, B. G., Baker, J. R., Jr, & Holl, M. M. (2009). The role of ganglioside GM1 in cellular internalization mechanisms of poly(amidoamine) dendrimers. Bioconjugate chemistry, 20(8), 1503–1513. https://doi.org/10.1021/bc900029k
-
Chen, J., Hessler, J. A., Putchakayala, K., Panama, B. K., Khan, D. P., Hong, S., Mullen, D. G., Dimaggio, S. C., Som, A., Tew, G. N., Lopatin, A. N., Baker, J. R., Holl, M. M., & Orr, B. G. (2009). Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes. The journal of physical chemistry. B, 113(32), 11179–11185. https://doi.org/10.1021/jp9033936
-
Kelly, C. V., Liroff, M. G., Triplett, L. D., Leroueil, P. R., Mullen, D. G., Wallace, J. M., Meshinchi, S., Baker, J. R., Orr, B. G., & Banaszak Holl, M. M. (2009). Stoichiometry and Structure of Poly(amidoamine) Dendrimer-Lipid Complexes. ACS nano, 3(7), 1886–1896. https://doi.org/10.1021/nn900173e
-
Majoros, I. J., Williams, C. R., Becker, A. C., & Baker, J. R., Jr (2009). Surface interaction and behavior of poly(amidoamine) dendrimers: deformability and lipid bilayer disruption. Journal of computational and theoretical nanoscience, 6(7), 1430–1436. https://doi.org/10.1166/jctn.2009.1189
-
Aillon, K. L., Xie, Y., El-Gendy, N., Berkland, C. J., & Forrest, M. L. (2009). Effects of nanomaterial physicochemical properties on in vivo toxicity. Advanced drug delivery reviews, 61(6), 457–466. https://doi.org/10.1016/j.addr.2009.03.010
-
Lee, H., & Larson, R. G. (2009). Multiscale modeling of dendrimers and their interactions with bilayers and polyelectrolytes. Molecules (Basel, Switzerland), 14(1), 423–438. https://doi.org/10.3390/molecules14010423
-
Meyers, S. R., Juhn, F. S., Griset, A. P., Luman, N. R., & Grinstaff, M. W. (2008). Anionic amphiphilic dendrimers as antibacterial agents. Journal of the American Chemical Society, 130(44), 14444–14445. https://doi.org/10.1021/ja806912a
-
Erickson, B., DiMaggio, S. C., Mullen, D. G., Kelly, C. V., Leroueil, P. R., Berry, S. A., Baker, J. R., Jr, Orr, B. G., & Banaszak Holl, M. M. (2008). Interactions of poly(amidoamine) dendrimers with Survanta lung surfactant: the importance of lipid domains. Langmuir : the ACS journal of surfaces and colloids, 24(19), 11003–11008. https://doi.org/10.1021/la801497d
-
Lee, H., & Larson, R. G. (2008). Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: the effect of molecular shape. The journal of physical chemistry. B, 112(39), 12279–12285. https://doi.org/10.1021/jp805026m
-
Mullen, D. G., Desai, A. M., Waddell, J. N., Cheng, X. M., Kelly, C. V., McNerny, D. Q., Majoros, I. J., Baker, J. R., Jr, Sander, L. M., Orr, B. G., & Banaszak Holl, M. M. (2008). The implications of stochastic synthesis for the conjugation of functional groups to nanoparticles. Bioconjugate chemistry, 19(9), 1748–1752. https://doi.org/10.1021/bc8002106
-
Kelly, C. V., Leroueil, P. R., Orr, B. G., Banaszak Holl, M. M., & Andricioaei, I. (2008). Poly(amidoamine) dendrimers on lipid bilayers II: Effects of bilayer phase and dendrimer termination. The journal of physical chemistry. B, 112(31), 9346–9353. https://doi.org/10.1021/jp8013783
-
Kelly, C. V., Leroueil, P. R., Nett, E. K., Wereszczynski, J. M., Baker, J. R., Jr, Orr, B. G., Banaszak Holl, M. M., & Andricioaei, I. (2008). Poly(amidoamine) dendrimers on lipid bilayers I: Free energy and conformation of binding. The journal of physical chemistry. B, 112(31), 9337–9345. https://doi.org/10.1021/jp801377a
-
Lee, H., & Larson, R. G. (2008). Coarse-grained molecular dynamics studies of the concentration and size dependence of fifth- and seventh-generation PAMAM dendrimers on pore formation in DMPC bilayer. The journal of physical chemistry. B, 112(26), 7778–7784. https://doi.org/10.1021/jp802606y
-
Verma, A., Uzun, O., Hu, Y., Hu, Y., Han, H. S., Watson, N., Chen, S., Irvine, D. J., & Stellacci, F. (2008). Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature materials, 7(7), 588–595. https://doi.org/10.1038/nmat2202
-
Gajbhiye, V., Kumar, P. V., Sharma, A., Agarwal, A., Asthana, A., & Jain, N. K. (2008). Dendrimeric nanoarchitectures mediated transdermal and oral delivery of bioactives. Indian journal of pharmaceutical sciences, 70(4), 431–439. https://doi.org/10.4103/0250-474X.44589
-
Evans K. O. (2008). Supported phospholipid bilayer interaction with components found in typical room-temperature ionic liquids – a QCM-D and AFM Study. International journal of molecular sciences, 9(4), 498–511. https://doi.org/10.3390/ijms9040498
-
Grinstaff M. W. (2007). Designing hydrogel adhesives for corneal wound repair. Biomaterials, 28(35), 5205–5214. https://doi.org/10.1016/j.biomaterials.2007.08.041
-
Heiden, T. C., Dengler, E., Kao, W. J., Heideman, W., & Peterson, R. E. (2007). Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicology and applied pharmacology, 225(1), 70–79. https://doi.org/10.1016/j.taap.2007.07.009
-
Kitchens, K. M., Foraker, A. B., Kolhatkar, R. B., Swaan, P. W., & Ghandehari, H. (2007). Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells. Pharmaceutical research, 24(11), 2138–2145. https://doi.org/10.1007/s11095-007-9415-0
-
Calabretta, M. K., Kumar, A., McDermott, A. M., & Cai, C. (2007). Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups. Biomacromolecules, 8(6), 1807–1811. https://doi.org/10.1021/bm0701088
-
Leroueil, P. R., Hong, S., Mecke, A., Baker, J. R., Jr, Orr, B. G., & Banaszak Holl, M. M. (2007). Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face?. Accounts of chemical research, 40(5), 335–342. https://doi.org/10.1021/ar600012y
-
Crampton, H. L., & Simanek, E. E. (2007). Dendrimers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers. Polymer international, 56(4), 489–496. https://doi.org/10.1002/pi.2230
-
Mecke, A., Lee, D. K., Ramamoorthy, A., Orr, B. G., & Banaszak Holl, M. M. (2005). Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. Biophysical journal, 89(6), 4043–4050. https://doi.org/10.1529/biophysj.105.062596
-
Mecke, A., Lee, D. K., Ramamoorthy, A., Orr, B. G., & Holl, M. M. (2005). Synthetic and natural polycationic polymer nanoparticles interact selectively with fluid-phase domains of DMPC lipid bilayers. Langmuir : the ACS journal of surfaces and colloids, 21(19), 8588–8590. https://doi.org/10.1021/la051800w