Recent Publications from the Tang Lab: 2018 – present
Chemists and Biologists work collaboratively on most current projects in the Tang group.
- “Rh(II) and Chiral Phosphoric Acid Co-catalyzed Selective O–H Insertions for Stereodivergent O-Alkylation of Glycosides” Wu, J.;‡ Jia, P.;‡ Tang, H.; Cai, D. and Tang, W.* J. Am. Chem. Soc. 2025, ASAP. Link. (‡Equal Contribution)
![](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2025/02/2025-JACS-300x118.webp)
- “Development of Prostate Cancer-Targeting BRD4 Intramolecular Bivalent Molecular Glue Degraders” Cai, D.;‡ Li, C.;‡ Bio Idrissou, M.; Hawkins, N. J.; Mudududdla, R.; Chen, X.; Nguyen, T. T.; Li, X.; Hernandez, R.; Tang, W.* ChemRxiv 2024. Link. (‡Equal Contribution)
- “Development of Potent and Selective RIPK1 Degraders with In Vivo Efficacy for Cancer Treatment” Zhang, Z.;‡ Li, C.;‡ Hawkins, N. J.;‡ Mudududdla, R.; Nie, Y.; Liu, P.-K.; Huang, P.; Del Rio, N. M.; Chang, H.; Brown, M. E.; Li, L.; Tang, W.* ChemRxiv 2024. Link. (‡Equal Contribution)
- “Development of Folate Receptor Targeting Chimeras for Cancer Selective Degradation of Extracellular Proteins” Zhou, Y.; Li, C.; Chen, X.; Zhao, Y.; Liao, Y.; Huang, P.; Wu, W.; Nieto, N. S.; Li, L.; and Tang, W.* Nat. Commun. 2024, 15, 8695. Link. Link to PDF file.
![](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2025/02/2024-NatComm.png)
- “AI is a viable alternative to high throughput screening: a 318-target study” The Atomwise AIMS Program (>100 authors) Sci. Rep. 2024, 14, 7526. Link.
- “Development of Integrin Targeting Chimeras (ITACs) for the Lysosomal Degradation of Extracellular Proteins” Zhou, Y.; Liao, Y.; Zhao, Y.; Tang, W.* ChemMedChem 2024, 19, e202300643. Link.
![Schematic illustration of degraders that recruit various lysosome-targeting receptors (LTRs)](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/2024-ITAC.jpg)
- “BCR::ABL1 Proteolysis-targeting chimeras (PROTACs): The new frontier in the treatment of Ph+ leukemias?” Cruz-Rodriguez, N.; Tang, H.; Benjamin Bateman, B.; Tang, W.; Deininger, M.* Leukemia 2024, 38, 1885–1893. Link.
- “Non-Markovian Dynamic Models Identify Non-Canonical KRAS-VHL Encounter Complex Conformations for Novel PROTAC Design” Qiu, Y.; Wiewiora, R. P.; Izaguirre, J. A.; Xu, H.; Sherman, W.; Tang, W.*; Huang, X.* JACS Au 2024, 4, 3857-3868. Link.
- “Development of Phenyl-substituted Isoindolinone- and Benzimidazole-Type Cereblon Ligands for Targeted Protein Degradation” Nie, X.;‡ Zhao, Y.;‡ Tang, H.;‡ Zhang, Z.; Liao, J.; Almodóvar-Rivera, C. M.; Sundaresan, R.; Xie, H.; Guo, L.; Wang, B.; Guan, H.; Xing, Y.; and Tang, W.* ChemBioChem 2024, 25, e202300685. Link. (‡Equal Contribution)
- “Stereo- and Site-selective Acylation in Carbohydrate Synthesis” Blaszczyk, S. A.; Li, X.; Wen, P.; and Tang, W.* Synlett 2024, 35, 1745-1762. (an account for our work in the past 10 years or so) Link.
- “Targeted Degradation of Extracellular Secreted and Membrane Proteins” Chen, X.; Zhou, Y. ; Zhao, Y.; and Tang, W.* Trends. Pharmacol. Sci. 2023, 44, 762-775. Link.
![](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/LYTAC-review.jpg)
- “Development of Potent and Selective Coactivator-Associated Arginine Methyltransferase 1 (CARM1) Degraders” Xie, H.;‡ Bacbac, M. S.;‡ Ma, M.; Kim, E.-J.; Wang, Y.; Wu, W.; Li, L.; Xu, W.* and Tang, W.* J. Med. Chem. 2023, 66,. Link. (‡Equal Contribution).
![Abstract image for Tang publication on "Development of Potent and Selective Coactivator-Associated Arginine Methyltransferase 1(CARM1) Degraders. Key points: (1) Quickly identified E3 libase and linker length by Rapid-TAC platform; (2) Rigid linkers yielded potent PROTACs 3b and 3e; (3) 3b is at least 100-fold more potent than TP-604 for downstream effects; (4) 3b is more potent than TP-064 for inhibiting breast cancer cell mibration](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2023/09/2023-JMC-HX2.jpg)
- “Dynamic Kinetic Stereoselective Glycosylation via Rh(II) and Chiral Phosphoric Acid-Cocatalyzed Carbenoid Insertion to Anomeric OH Bond for the Synthesis of Glycoconjugates” Wu, J.;‡ Jia, P.;‡ Kuniyil, R.;‡ Liu, P.* and Tang, W.* Angew. Chem. In. Ed. 2023, 62, e202307144. Link. (‡Equal Contribution) Highlighted as “hot paper”
![An efficient approach for the stereoselective synthesis of α-linked glycoconjugates was reported via a RhII/chiral phosphoric acid (CPA)-cocatalyzed dynamic kinetic anomeric O-alkylation of sugar-derived lactols via carbenoid insertion, achieving excellent anomeric/diastereo-selectivity, broad substrate scope, and high efficiency.](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2023/08/2023-ACIE.jpg)
- “A Modular Chemistry Platform for the Development of a Cereblon E3 Ligase-based Partial PROTAC Library” Almodóvar-Rivera, C. M.; Zhang, Z.; Li, J.; Xie, H.; Zhao, Y.; Guo, L.; Mannhardt, M. G. and Tang, W.* ChemBioChem 2023, 24, e202300482. Link.
- “A platform for the rapid synthesis of molecular glues (Rapid-Glue) under miniaturized conditions for direct biological screening” Li, J.;‡ Li, C.;‡ Zhang, Z.;‡ Zhang, Z.;‡ Wu, Z.; Liao, J.; Wang, Z.; McReynolds, M.; Xie, H.; Guo, L.; Fan, Q.; Peng, J. and Tang, W.* Eur. J. Med. Chem. 2023, 258, 115567. Link. (‡Equal Contribution)
![Abstract image showing that when 380 commercially available aldehydes are combined with 4 building blocks in DMSO, 1520 compounds are generated under miniaturized conditions.](https://ars.els-cdn.com/content/image/1-s2.0-S0223523423005330-ga1.jpg)
- “Development of Oligomeric Mannose-6-phosphonate Conjugates for Targeted Protein Degradation” Stevens, C. M.‡; Zhou, Y.‡; Teng, P.‡; Rault, L. N.; Liao, Y.; Tang, W.* ACS Med. Chem. Lett. 2023, 14, . Link. (‡Equal Contribution)
![Graphical abstract: the development of a series of structurally well-defined mannose-6-phosphonate (M6Pn)-peptide conjugates that are capable of linking to a variety of targeting ligands for proteins of interest and successfully internalizing and degrading those proteins through M6PR.](https://pubs.acs.org/cms/10.1021/acsmedchemlett.2c00479/asset/images/medium/ml2c00479_0006.gif)
- “Development of Substituted Phenyl Dihydrouracil as the Novel Achiral Cereblon Ligands for Targeted Protein Degradation” Xie, H.‡; Li, C.‡; Tang, H.; Tandon, I.; Liao, J.; Roberts, B. L.; Zhao, Y.; Tang, W.* J. Med. Chem. 2023, 66, 2904-2917. Link. (‡Equal Contribution)
![Abstract image of findings: substituted achiral phenyl dihydrouracil (PDHU) can be used as a novel class of CRBN ligands for the development of PROTACs. Although the parent PDHU has a minimal binding affinity to CRBN, we found that some substituted PDHUs had a comparable binding affinity to lenalidomide. Structural modeling provided a further understanding of the molecular interactions between PDHU ligands and CRBN. PDHUs also have greater stability than lenalidomide. Finally, potent BRD4 degraders were developed by employing trisubstituted PDHUs.](https://pubs.acs.org/cms/10.1021/acs.jmedchem.2c01941/asset/images/medium/jm2c01941_0012.gif)
- “LPA81: Discovery of an Exceptionally Potent Protac Degrading Native and Mutant BCR-ABL1 Oncoprotein in CML” Milad Rouhimoghadam, M.; Tang, H.; Liao, J.; Bates, B.; Uribe-Cano, D.; Zhao, H.; Tang, W.; Deininger, M. W. Blood 2022, 140 (Supplement 1), 485–486. Link.
- “Diptoindonesin G is a middle domain HSP90 modulator for cancer treatment” Donahue, K.‡; Xie, H.‡; Li, M.; Gao, A.; Ma, M.; Wang, Y.; Tipton, R.; Semanik, N.; Primeau, T.; Li, S.; Li, L.; Tang, W.*; Xu, W.* J. Biol. Chem. 2022, 298 , 102700. Link. (‡Equal Contribution) (Editor’s pick)
- “Development of Selective FGFR1 Degraders using a Rapid Synthesis of Proteolysis Targeting Chimera (Rapid-TAC) Platform” Guo, L.‡; Liu, J.‡; Nie, X.‡; Wang, T.; Ma, Z.- X., Yin, D. Tang, W.* Bioorg. Med. Chem. Lett. 2022, 75, 128982. Link. (‡Equal Contribution)
![Abstract image for Tang Lab study "Development of selective FGFR1 degraders using a Rapid synthesis of proteolysis targeting Chimera (Rapid-TAC) platform"](https://ars.els-cdn.com/content/image/1-s2.0-S0960894X22004589-ga1.jpg)
- “Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation” Chen, Y.; Tandon, I.; Heelan, W.; Wang, Y.; Tang, W.* and Hu, Q.* Chem. Soc. Rev. 2022, 51, 5330-5350. Link.
![Graphical abstract: Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation](https://pubs.rsc.org/en/Image/Get?imageInfo.ImageType=GA&imageInfo.ImageIdentifier.ManuscriptID=D1CS00762A&imageInfo.ImageIdentifier.Year=2022)
- “A Platform for the Rapid Synthesis of Proteolysis Targeting Chimeras (Rapid-TAC) under Miniaturized Conditions” Guo, L.‡; Zhou, Y.‡; Nie, X.‡; Zhang, Z.; Zhang, Z.; Li, C.; Wang, T.; and Tang, W.* Eur. J. Med. Chem. 2022, 236, 114317. Link. (‡Equal Contribution)
![Graphical abstract for Tang Lab study "A platform for the rapid synthesis of proteolysis targeting chimeras (Rapid-TAC) under miniaturized conditions"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2022/04/EJMC-Le-300x173.jpg)
- “A General Strategy for the Synthesis of Rare Sugars via Ru(II)-catalyzed and Boron-mediated Selective Epimerization of 1,2-trans-diols to 1,2-cis-diols” Li, X.; Wu, J.; and Tang, W.* J. Am. Chem. Soc. 2022, 144, . Link. Highlighted in Organic Chemistry Highlight – Link.
![](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/10.1021_jacs.1c13399-3892544250.gif)
- “Streamlined Iterative Assembly of Thio-oligosaccharides by Aqueous S-Glycosylation of Diverse Deoxythio Sugars” Wen, P.‡; Jia, P.‡; Fan, Q.; McCarty, B. J. and Tang, W.* ChemSusChem 2022, 15, e202102483. Link. (‡Equal Contribution)
![](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/cssc202102483-toc-0001-m-scaled-e1726841687337.jpg)
- “In Silico Modeling and Scoring of PROTAC-Mediated Ternary Complex Poses” Liao, J.; Nie, X.; Unarta, I. C.; Ericksen, S. S.*; and Tang, W.* J. Med. Chem. 2022, 65, . Link.
![Illustrated info model that compares poses and whether they are maintained in crystal ref](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/images_medium_jm1c02155_0015.gif)
- “Energy Decomposition Analysis Reveals the Nature of Lone Pair−π Interactions with Cationic π Systems in Catalytic Acyl Transfer Reactions” Hao, H.; Qi, X.; Tang, W.* and Liu, P.* Org. Lett. 2021, 23, . Link.
![Graphical abstract for "Energy Decomposition Analysis Reveals the Nature of Lone Pair−π Interactions with Cationic π Systems in Catalytic Acyl Transfer Reactions"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/images_medium_ol1c01351_0005.gif)
- “Development of Triantennary N-Acetylgalactosamine Conjugates as Degraders for Extracellular Proteins” Zhou, Y.; Teng, P.; Montgomery, N. T.; Li, X.; and Tang, W.* ACS Cent. Sci, 2021, 7, . Link.
![Graphical abstract: The attachment of trimeric GalNAc to small molecules or antibodies yields bifunctional molecules that can selectively direct extracellular proteins into the lysosome of liver cells for degradation.](/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/TOC-rev.webp)
- “Evaluation of the binding affinity of E3 ubiquitin ligase ligands by cellular target engagement and in-cell ELISA assay” Yang, K.; Zhou, Y.; Roberts, R. L.; Nie, X.; Tang, W.* Star Protocols 2021, 2, 100288. Link.
- “A neuroanatomical mechanism linking perinatal TCDD exposure to lower urinary tract dysfunction in adulthood” Turco, A. E.; Oakes, S. R.; Stietz, K. P. K. Dunham, C. L.; Joseph, D. B.; Chathurvedula, T. S.; Girardi, N. M.; Schneider, A. J.; Gawdzik, J.; Sheftel, C. M.; Wang, P.; Wang, Z.; Bjorling, D. E.; Ricke, W. A.; Tang, W.; Hernandez, L. L.; Keast, J. R.; Bonev, A. D.; Grimes, M. D.; Strand, D. W.; Tykocki, N. R.; Tanguay, R. L.; Peterson, R. E.; Vezina, C. M. Dis. Models Mech. 2021, 14, dmm049068. Link.
- “Development of MDM2 Degraders Based on Ligands Derived from Ugi Reactions:
Lessons and Discoveries” Wang, B.‡; Liu, J.‡; Tandon, I.; Wu, S.; Teng, P.; Liao, J.; and Tang, W.* Eur. J. Med. Chem. 2021, 219, 113425. Link. (‡Equal Contribution)
![Chemical structure and graph involving MDM2 degraders](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/MDM2-UGI-lrg.jpg)
- “A dancing nickel in asymmetric catalysis: Enantioselective synthesis of boronic esters by 1,1-addition to terminal alkenes” McCarty, B. J. and Tang, W.* Green Syn. Cat. 2021, 2, 1-3. Link.
- “Transition Metal-Catalyzed Selective Carbon−Carbon Bond Cleavage of Vinylcyclopropanes in Cycloaddition Reactions” Wang, J.; Blaszczyk, S. A.; Li, X.;* and Tang, W.* Chem. Rev. 2021, 121, 110-139. Link.
- “A marine microbiome antifungal targets urgent-threat drug-resistant fungi” Zhang, F.; Zhao, M.; Braun, D. R.; Ericksen, S. S.; Piotrowski, J. S.; Nelson, J.; Peng, J.; Ananiev, G. E. Chanana, S.; Barns, K.; Fossen, J.; Sanchez, H.; Chevrette, M. G.; Guzei, I. A.; Zhao, C.; Guo, L.; Tang, W.; Currie, C. R.; Rajski, S. R.; Audhya, A.; Andes, D. R.; Bugni, T. S. Science, 2020, 370 (issue 6519), 974-978. Link.
- “From Methylene Bridged Diindole to Carbonyl Linked Benzimidazoleindole: Development of Potent and Metabolically Stable PCSK9 Modulators” Xie, H.;‡ Yang, K.;‡ Winston-McPherson, G. N.; Stapleton, D. S.; Keller, M. P.; Attie, A. D.; Smith, K. A.; and Tang, W.* Eur. J. Med. Chem. 2020, 206, 112678-112692. Link. (‡Equal Contribution)
![Graphical abstract for Tang research article "From methylene bridged diindole to carbonyl linked benzimidazoleindole: Development of potent and metabolically stable PCSK9 modulators"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/1-s2.0-S0223523420306504-fx1_lrg-1024x307.jpg)
- “Mild Cu(OTf)2-mediated C-glycosylation with Chelation-Assisted Picolinate as a Leaving Group” Ye, W.;‡ Stevens, C. M.;‡ Wen, P.;‡ Simmons, C. J.; and Tang, W.* J. Org. Chem. 2020, 85, 16218–16225. Link. (‡Equal Contribution) (Special Issue on A New Era of Discovery in Carbohydrate Chemistry)
- “A Cell-based Target Engagement Assay for the Identification of Cereblon E3 Ubiquitin Ligase Ligands and Their Application in HDAC6 Degraders” Yang, K.;‡ Zhao, Y.;‡ Nie, X.; Wu, H.; Wang, B.; Almodovar-Rivera, C. M.; Xie, H.;* Tang, W.* Cell Chem. Biol. 2020, 27, 866-876. Link. (‡Equal Contribution
![Graphical abstract for Tang research article "A Cell-Based Target Engagement Assay for the Identification of Cereblon E3 Ubiquitin Ligase Ligands and Their Application in HDAC6 Degraders"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/1-s2.0-S2451945620301458-fx1_lrg.jpg)
- “Two-stage Strategy for Development of Proteolysis Targeting Chimeras and its Application for Estrogen Receptor Degraders” Roberts, B. L.;‡ Ma, Z.-X.;‡ Gao, A.; Leisten, E. D.; Yin, D.; Xu, W.; and Tang, W.* ACS Chem. Biol. 2020, 15, Link. (‡Equal Contribution)
![Graphical abstract showing Tang lab study stages. Stage 1: Simultaneously examine multiple parameters of a library of unstable PROTACs by in-cell ELISA, and Stage 2: Form stable PROTACs by bioisoteric replacement.](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/images_medium_cb0c00140_0009.gif)
- “Chemical Synthesis and Biological Application of Modified Oligonucleotides” Glazier, D. A.;‡ Liao, J.;‡ Roberts, B. L.;‡ Li, X.; Yang, K.; Stevens, C. M.; and Tang, W.* Bioconjugate Chem. 2020, 31, . Link. (‡Equal Contribution)
![Graphical abstract for Tang article "Chemical Synthesis and Biological Application of Modified Oligonucleotides"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/2020-Bioconjugate-Chem-TOC-300x164-1.gif)
- “Development of Selective Histone Deacetylase 6 (HDAC6) Degraders Recruiting Von Hippel–Lindau (VHL) E3 Ubiquitin Ligase” Yang, K.;‡ Wu, H.;‡ Zhang, Z.; Leisten, E. D.; Nie, X.; Liu, B.; Wen, Z.; Zhang, J.; Cunningham, M. D. and Tang, W.* ACS Med. Chem. Lett. 2020, 11, 575-581. Link. (‡Equal Contribution)
![Graphical abstract for Tang article "Development of Selective Histone Deacetylase 6 (HDAC6) Degraders Recruiting Von Hippel–Lindau (VHL) E3 Ubiquitin Ligase"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/2020-ACS-Med-Chem-300x114-1.gif)
- “Synthesis of Glycosyl Chlorides and Bromides by Chelation Assisted Activation of Picolinic Esters under Mild Neutral Conditions” Wen, P.;‡ Simmons, C. J.;‡ Ma, Z.-X.; Blaszczyk, S. A.; Balzer, P. G.; Ye, W.; Duan, X.; Wang, H.-Y.; Yin, D.; Stevens, C. M.; and Tang, W.* Org. Lett. 2020, 22, 1495-1498. Link. (‡Equal Contribution)
- “Synthesis and Biological Evaluation of FICZ Analogues as Agonists of Aryl Hydrocarbon Receptor” Wu, H.;‡ Liu, B.;‡ Yang, K.;‡ Winston-McPherson, G. N.; Leisten, E. D.; Vezina, C. M.; Ricke, W. A.; Peterson, R. E.; and Tang, W.* Bioorg. Med. Chem. Lett. 2020, 30, 126959. Link. (‡Equal Contribution)
- “Rhodium-Catalyzed (5 + 2) and (5 + 1) Cycloadditions Using 1,4-Enynes as Five-Carbon Building Blocks” Blaszczyk, S. A.; Glazier, D. A.; and Tang, W.* Acc. Chem. Res. 2020, 53, 231-243. Link.
![Graphical abstract image for Tang article "Rhodium-Catalyzed (5 + 2) and (5 + 1) Cycloadditions Using 1,4-Enynes as Five-Carbon Building Blocks"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/2019-ACR-300x77-1.gif)
- “Mechanism of Activation for the Sirtuin 6 Protein Deacylase” Klein, M. A., Liu, C.; Kuznetsov, V. I.; Feltenberger, J. B.; Tang, W.; Denu, J. M.* J. Biol. Chem. 2020, 295, 1385-1399. Link.
- “In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure exacerbates urinary dysfunction in hormone-treated C57BL/6J mice through a non-malignant mechanism involving proteomic changes in the prostate that differ from those elicited by testosterone and estradiol” Turco, A. E.; Thomas, S; Crawford, L. K.; Tang, W.; Peterson, R. E.; Li, L.; Ricke, W. A.; Vezina, C. M.* Am. J. Clin. Exp. Urol. 2020, 8, 59. Link.
- “Tissue-specific quantification and localization of androgen and estrogen receptors in prostate cancer” Sehgal, P. D.; Bauman, T. M.; Nicholson, T. M.; Vellky, J. E.; Ricke, E. A.; Tang, W.; Xu, W.; Huang, W.; Ricke, W. A.* Hum. Pathol. 2019, 89, 99-108. Link.
- “Site- and Stereoselective O-Alkylation of Glycosides by Rh(II)-Catalyzed Carbenoid Insertion” Wu, J.;‡ Li, X.;‡ Qi, X.; Duan, X.; Cracraft, W. L.; Guizei, I. A.; Liu, P.;* and Tang, W.* J. Am. Chem. Soc. 2019, 141,. Link. (‡Equal Contribution)
![Graphical abstract image for Tang article "Site-Selective and Stereoselective O-Alkylation of Glycosides by Rh(II)-Catalyzed Carbenoid Insertion"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/2019-JACS-300x152-1.gif)
- “A general strategy for diversifying complex natural products to polycyclic scaffolds with medium-sized rings” Zhao, C.; Ye, Z.; Ma, Z.-X.; Wildman, S. A.; Blaszczyk, S. A.; Hu, L.; Guizei, I. A.; Tang, W.* Nat. Commun. 2019, 10, 4015. Link.
![Graphical abstract: Two Phases of Diversification. Starting from a polycyclic scaffold, we are able to oxidize then functionalize various natural products to produce modified scaffolds](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/2019-Nat-Comm-300x228-1.png)
- “Discovery of 2,3′-diindolylmethanes as a novel class of PCSK9 modulators” Winston-McPherson, G. N.;‡ Xie, H.;‡ Yang, K.;‡ Li, X.; Shu, D.; Tang, W.* Bioorg. Med. Chem. Lett. 2019, 29, 2345-2348. Link. (‡Equal Contribution)
- “Development of Multi-Functional Histone Deacetylase 6 Degraders with Potent Anti-Myeloma Activity” Wu, H.; ‡ Yang, K.; ‡ Zhang, Z.; Leisten, E. D.; Li, Z.; Xie, H.; Liu, J.; Smith, K. A.; Novakova, Z.; Barinka, C.; and Tang, W.* J. Med. Chem. 2019, 62, 7042-7057. Link. (‡Equal Contribution)
![Graphical abstract image for Tang article "Development of Multi-Functional Histone Deacetylase 6 Degraders with Potent Anti-Myeloma Activity"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/2019JMC-300x107-1.gif)
- “Site‐ and Stereoselective Phosphoramidation of Carbohydrates Using a Chiral Catalyst and a Chiral Electrophile” Glazier, D. A.; Schroeder, J. M.; Blaszczyk, S. A.; Tang, W.* Adv. Syn. Cat. 2019, 361, 3729-3732. Link.
![Graphical abstract image for Tang article "Site- and Stereoselective Phosphoramidation of Carbohydrates Using a Chiral Catalyst and a Chiral Electrophile"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/adsc201900382-toc-0001-m-300x146-1.webp)
- “Development of selective small molecule MDM2 degraders based on nutlin” Wang, B.;# Wu, S.;# Liu, J.; Yang, K.; Xie, H.; and Tang, W.* Eur. J. Med. Chem. 2019, 176, 476-491. Link.(#Equal Contribution)
![3-D and chemical diagram showing structure of Degrader 32 within the Ternary Complex](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/1-s2.0-S0223523419304568-fx1.jpg)
- “S‐Adamantyl Group Directed Site‐Selective Acylation and Its Applications in the Streamlined Assembly of Oligosaccharides” Blaszczyk. S. A.;# Xiao, G.;# Wen, P.;# Hao, H.; Wu, J.; Wang, B.; Carattino, F.; Li, Z.; Glazier, D. A.; McCarty, B. J.; Liu, P.* and Tang, W.* Angew. Chem. Int. Ed. 2019, 58, 9542-9546. Link. (#Equal Contribution)
![Graphical abstract: The sterically encumbered adamantyl group (Adm) directs site-selective acylation at the C2 position of S-glycosides through dispersion interactions between the adamantyl C−H bonds and the π system of the cationic acylated catalyst. Because of their stability, chemical orthogonality, and ease of activation for glycosylation, the site-selective acylation of S-glycosides can streamline oligosaccharide synthesis.](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/2019ACIE-S-300x104-1.png)
- “Finding the Sweet Spot in SAX-ERLIC Mobile Phase for Simultaneous Enrichment of N-glyco and Phospho- peptides” Cui, Y.; Yang, K.; Tabang D. N.; Huang, J.; Tang, W., Li, L.* J. Am. Soc. Mass Spectrom. 2019, 30, 2491–2501. Link.
![Graphical abstract for Tang article "Finding the Sweet Spot in ERLIC Mobile Phase for Simultaneous Enrichment of N-Glyco and Phosphopeptides"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/2019-JMass-Spec-300x150-1.jpg)
- “Identification of a novel class of RIP1/RIP3 dual inhibitors that impede cell death and inflammation in mouse abdominal aortic aneurysm models” Zhou, T.; Wang, Q.; Phan, N.; Ren, J.; Yang, H.; Feldman, C. C.; Feltenberger, J. B.; Ye, Z.; Wildman, S. A.; Tang, W., Liu, B.* Cell Death & Disease 2019, 10, 226. Link.
![Graphical abstract from Tang article "Identification of a novel class of RIP1/RIP3 dual inhibitors that impede cell death and inflammation in mouse abdominal aortic aneurysm models"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/2019-with-BO-Liu-2-300x159-1.png)
- “Intermolecular Regio- and Stereoselective Hetero-[5+2] Cycloaddition of Oxidopyrylium Ylides and Cyclic Imines” Zhao, C.; Glazier, D. A.; Yang, D.; Yin, D.; Guzei, I. A.; Aristov, M. M.; Liu, P.* and Tang, W.* Angew. Chem. Int. Ed. 2019, 58, 887-891. Link.
![Graphical abstract from Tang study "Intermolecular Regio- and Stereoselective Hetero-[5+2] Cycloaddition of Oxidopyrylium Ylides and Cyclic Imines"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/anie201811896-toc-0001-m-300x79-1.jpg)
- “Recent advances in site-selective functionalization of carbohydrates mediated by organocatalysts” Blaszczyk, S. A.; Homan, T. C.; Tang, W.* Carbohydr. Res. 2019, 471, 64-77. Link.
- “Organocatalyst-Mediated Dynamic Kinetic Enantioselective Acylation of 2-Chromanols” Glazier, D. A.; Schroeder, J. M.; Liu, J.; Tang, W.* Adv. Syn. Cat. 2018, 360, 4646-4649. Link.
- “Development of the first small molecule histone deacetylase 6 (HDAC6) degraders.” Yang, K.; Song, Y.; Xie, H.; Wu, H.; Wu, Y.-T.; Leisten, E. D.; Tang W.* Bioorg. Med. Chem. Lett. 2018, 28, 2493-2497. Link.
![Graphical abstract for Tang publication "Development of the first small molecule histone deacetylase 6 (HDAC6) degraders"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/1-s2.0-S0960894X18304694-fx1.jpg)
- “Catalytic Asymmetric Synthesis of All Possible Stereoisomers of 2,3,4,6‐Tetradeoxy‐4‐Aminohexopyranosides” Zhu Z.; Glazier, D. A.; Yang D.; Tang, W.* Adv. Syn. Cat. 2018, 360, 2211-2215. Link.
![](https://wol-prod-cdn.literatumonline.com/cms/attachment/ecdffd0b-1a21-4c85-ad13-a406c365df6d/adsc201800029-toc-0001-m.png)
- “Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR)” Seok, S.-H.; Ma, Z.-X.; Feltenberger, J. B.; Chen, H.; Chen, H.; Scarlett, C.; Lin, Z.; Satyshur, K. A.; Cortopassi, M.; Jefcoate, C. R.; Ge, Y.; Tang, W.; Bradfield, C. A.; and Xing, Y.* J. Biol. Chem. 2018, 293, 1994-2005. Link.
- “Iridium-Catalyzed Dynamic Kinetic Stereoselective Allylic Etherification of Achmatowicz Rearrangement Products.” Zhu, Z.‡; Wang, H.-Y.‡; Simmons, C. J.; Tseng, P.-S.; Qiu, X.; Zhang, Y.; Duan, X.; Yang, J.-K.; and Tang W.* Adv. Syn. Cat. 2018, 360, 595-599. (‡Equal Contribution) Link.
![Graphical abstract image for Tang research article "ridium-Catalyzed Dynamic Kinetic Stereoselective Allylic Etherification of Achmatowicz Rearrangement Products"](https://pharmacy.wisc.edu/faculty/tang-research-group/wp-content/uploads/sites/10/2024/09/adsc201700950-toc.png)
- “Chiral Reagents in Glycosylation and Modification of Carbohydrates.” Wang, H.-Y.; Blaszczyk, S. A.; Xiao, G.; and Tang W.* Chem. Soc. Rev. 2018, 47, 681-701. Link.