The Pharmaceutical Sciences PhD Program at the University of Wisconsin-Madison School of Pharmacy provides a rigorous background in a range of scientific disciplines that are critical to the preparation of the next generation of pharmaceutical scientists. With 31 faculty members and approximately 60 graduate students, the program's interdisciplinary training combines pharmaceutically relevant aspects of classical disciplines such as chemistry, biology and engineering. Students earn a PhD in Pharmaceutical Sciences, concentrating in one of three research cores: Drug Discovery, Drug Action, or Drug Delivery.

Recent program graduates have found employment in a variety of industrial settings or in prestigious postdoctoral academic research labs. Opportunities in research and development roles for pharmaceutical, chemical, biotechnology and other innovation-minded companies are a common post-graduate path; some graduates eventually achieve faculty positions at small colleges or at larger research institutions. By partnering with other units on campus, we have increased career services such that our students can sharpen their professional and communication skills and reach a larger network of potential employers. The program graduated 36 PhDs from 2012-16; over ninety percent of these recent alumni were professionally placed (i.e., working in their field) within six months of graduation.

Research in Drug Discovery focuses on areas related to medicinal chemistry, such as small molecule development, natural products isolation and characterization, organic synthesis, chemical biology and rational drug design.

Drug Action focuses on areas related to pharmacology, toxicology, cellular differentiation, development, and disease. Interests include the impact of drugs and toxins on biological systems, mechanisms of normal biology, and mechanisms of disease. These are studied at the cellular, genetic, molecular, and biochemical levels using diverse model systems.

Drug Delivery emphasizes principles in physical chemistry and drug transport, aiming for advances in formulation, drug targeting, and multi-modal therapy. Delivery research includes the solid state chemistry of drugs, nano-pharmacy, biocompatibility, molecular recognition, computational chemistry, pharmacokinetics, and molecular imaging.

The UW-Madison Pharmaceutical Sciences Division has been recognized for its research productivity, extramural funding support, publication record and teaching. The School of Pharmacy is housed in Rennebohm Hall, a seven-story, state-of-the-art facility.

Accepted graduate applicants commonly have strong scientific backgrounds, a passion for research, and significant laboratory experience. Students with undergraduate degrees in the physical or biological sciences, engineering, pharmacy and related fields are encouraged to apply. UW-Madison is one of the nation's most prolific research universities, located on the shores of Lake Mendota in the state's vibrant capital city.

UW-Madison remains extremely competitive in the national research landscape, ranking fourth place in research spending among U.S. universities with high emphasis on the life sciences and basic research. The beautiful, thriving city of Madison is consistently recognized as one of the best cities in multiple categories for quality of life. Visit grad.wisc.edu to learn more about the many reasons to choose UW-Madison for graduate study.

Contact
Graduate Programs Coordinator
gradadmissions@pharmacy.wisc.edu
(608) 262-4257
Pharmaceutical Sciences Division
University of Wisconsin Madison
School of Pharmacy
777 Highland Avenue
Madison, WI 53705-2222
Ralph Albrecht, Professor (Action/Delivery)
Use of inductively heated, antibody targeted, core-shell nanoparticles for selective removal of targeted cells in vitro and in vivo. Development of high resolution nanoparticle labeling systems for correlative microscopy.
Email: albrecht@ansci.wisc.edu

Arash Bashirullah, Associate Professor (Action)
Genetics of endocrine and exocrine biology: the molecular, cellular, and physiological control of post-embryonic development.
Email: arash.bashirullah@wisc.edu

Tim S. Bugni, Associate Professor (Discovery)
Marine natural products chemistry; antibiotic drug discovery; structure determination of novel natural products using NMR and mass spectrometry; and metabolomics studies of marine invertebrate associated microorganisms.
Email: tim.bugni@wisc.edu

Ron Burnette, Professor and Chair (Delivery)
Developing a molecular level mechanistic understanding of the delivery and stability of drugs by physical chemical characterization of guest-host interactions using computational chemistry and NMR as well as studies in pharmacokinetics and pharmacodynamics.
Email: ronald.burnette@wisc.edu

Weibo Cai, Associate Professor (Delivery)
Biomedical nanotechnology; molecular imaging (positron emission tomography and multimodal); image-guided drug delivery; theranostics; translational research; tumor targeting; cancer diagnosis/therapy; imaging of cardiovascular diseases and diabetes.
Email: wcai@uwhealth.org

Margaret Clagett-Dame, Professor (Action)
Therapeutic applications of vitamin A and vitamin D analogs; retinoids in embryonic and nervous system development.
Email: dame@biochem.wisc.edu

Lara Collier, Associate Professor (Action)
Genetic and pharmacologic approaches to study disease development and treatment, focusing on cancer and central nervous system diseases.
Email: lara.collier@wisc.edu

Jun Dai, Assistant Professor (Action)
Understanding the transcriptional networks that control keratinocyte proliferation/differentiation and epidermal barrier functions during development and under pathological conditions. Developing novel therapeutic strategies for the treatment of inflammatory skin diseases and skin cancer.
Email: jdai32@wisc.edu

Adnan Elfarra, Professor (Action)
Bioactivation and detoxification of drugs, industrial chemicals, and environmental toxicants; biochemical basis for target organ selectivity; biomarkers of toxicant exposure.
Email: elfarra@svm.vetmed.wisc.edu

Jennifer Golden, Assistant Professor (Discovery)
Email: jennifer.golden@wisc.edu

Warren Heideman, Professor (Action)
Understanding the molecular mechanisms that regulate the cellular transition from quiescence to growth; identifying critical mechanisms regulating vertebrate development that are disrupted by environmental contaminants; evaluating the impact of nanomaterials on early development; creating strategies for the fermentative production of biofuels.
Email: wheidema@wisc.edu

Seungpyo Hong, Professor (Delivery)
Biomimetic nanotechnology; polymeric nanomaterials; dendritic polymers; targeted drug delivery; cancer diagnostics/prognostics; liquid biopsy technology.
Email: seungpyo.hong@wisc.edu

Richard Hsung, Professor (Discovery)
Developing novel and practical synthetic methods for drug discovery; total syntheses of complex natural products with biological relevance; syntheses of de novo protease inhibitors for drug designs and asymmetric catalysis.
Email: richard.hsung@wisc.edu

Colin Jefcoate, Professor (Action)
Physiological mechanisms associated with P450 cytochromes.
Email: jefcoate@wisc.edu

Jiaoyang Jiang, Assistant Professor (Discovery)
Study the mechanism and function of protein post-translational modifications using a variety of interdisciplinary approaches, such as chemical biology, enzymology, biochemistry, mass spectrometry, X-ray crystallography, cell biology, and genetics.
Email: jiaoyang.jiang@wisc.edu

Jeffrey Johnson, Professor (Action)
Signal transduction, transcriptional control of neuroprotective genes and neurotoxicity in Parkinson's, Alzheimer's, Huntington's and Neuromuscular disease.
Email: jeffrey.johnson@wisc.edu

pharmacy.wisc.edu/programs/pharmsci
Jason Kwan, Assistant Professor (Discovery)
The role of uncultured symbionts in natural product biosynthesis within marine invertebrates; marine natural products chemistry; drug discovery; next-generation sequencing; metagenomics; bioinformatics; biosynthesis.
Email: jason.kwan@wisc.edu

Glen Kwon, Professor (Delivery)
Pharmaceutical nanotechnology; polymeric micelles; polymeric drug conjugates; PEGylation.
Email: glen.kwon@wisc.edu

Aparna Lakkaraju, Associate Professor (Action)
Identification of mechanisms underlying retinal degenerations using state-of-the-art live-cell imaging, mouse models, and novel genetic tools. Emphasis on developing novel therapeutics to prevent vision loss.
Email: lakkaraju@wisc.edu

Charles Lauhon, Associate Professor, Vice Chair (Discovery)
Assistant Dean—Graduate Studies
Biochemistry of RNA modifying enzymes; bioorganic chemistry of RNA; nucleotide based drug design.
Email: clauhon@wisc.edu

Lingjun Li, Professor (Action/Discovery)
Analytical neurochemistry; neuropeptides; proteomics and peptidomics; biomarker discovery in neurodegenerative diseases; quantitative system biology; metabolomics; microseparations; imaging mass spectrometry and its application to drug delivery and biodistribution; biological mass spectrometry.
Email: lingjun.li@wisc.edu

Paul Marker, Professor, Vice Chair (Action)
Molecular basis of prostate development; prostate cancer progression; benign prostatic hyperplasia; roles of cell-cell signaling pathways and the use of mouse genetics to discover novel pathways that underlie prostatic diseases.
Email: paul.marker@wisc.edu

Sandro Mecozzi, Associate Professor (Delivery/Discovery)
Fluorous polymers in drug delivery and imaging; micelles and nanoemulsions; nanomedicine; reactions in micellar systems; molecular recognition of RNA.
Email: sandro.mecozzi@wisc.edu

William Ricke, Associate Professor (Action)
Understanding the molecular mechanisms involved with hormone therapy in the prevention and treatment of urologic cancers and benign diseases. Focus areas include translational research, steroids and small molecules, stromal-epithelial interactions, endocrine disrupting chemicals, and mouse models of disease progression.
Email: rickew@urology.wisc.edu

Steve Swanson, Dean and Professor (Discovery/Action)
Preclinical model systems to investigate the role of the growth hormone/IGF-I axis in prostate carcinogenesis.
Email: steve.swanson@wisc.edu

Weiping Tang, Professor (Discovery)
Synthesis methodology, natural product synthesis, medicinal chemistry, assay development, and chemical biology. Current focus on developing novel methods for the synthesis of carbohydrates and designing small molecules to selectively degrade targeted proteins.
Email: weiping.tang@wisc.edu

Michael Taylor, Assistant Professor (Action/Delivery)
Modeling blood-CNS barriers in zebrafish; developing new strategies for drug delivery to the brain; understanding the regulation of multidrug resistance transporters.
Email: michael.taylor@wisc.edu

Robert Thorne, Assistant Professor (Delivery)
Mechanisms and strategies for the central nervous system delivery and distribution of biologics (peptides, proteins, siRNA, nanoparticles, and viral gene therapy vectors). Focus on: antibody-based drugs and adeno-associated virus vectors for gene therapy; intraparenchymal, intrathecal and intranasal routes of administration.
Email: robert.thorne@wisc.edu

Lauren Trepanier, Professor (Action)
Pharmacogenetics of xenobiotic toxicity, including both therapeutic drugs and environmental carcinogens. Mechanisms of familial and acquired risk for sulfamethoxazole drug hypersensitivity (“sulfa allergy”). Genetic variability in phase II detoxification pathways (especially GSTs and cytochrome b5 reductase) and cancer risk in both humans and dogs.
Email: lauren.trepanier@wisc.edu

Chad Vezina, Associate Professor (Action)
Molecular basis of prostate and urinary tract development, physiology, and toxicology.
Email: cmvezina@wisc.edu

Jamey Weichert, Associate Professor (Delivery/Discovery)
Design and development of diaphoretic molecular imaging and therapy agents for oncology applications.
Email: jweichert@uwhealth.org

Lian Yu, Professor (Delivery)
Pharmaceutical materials science; solid-state chemistry; amorphous pharmaceuticals; molecular glasses; crystallization; polymorphism; surface mobility; polymeric crystallization inhibitors.
Email: lian.yu@wisc.edu

pharmacy.wisc.edu/programs/pharmsci