Synthesis of Functionalized Cyclohexenone Core of Welwitindolinones via Rhodium-Catalyzed [5 + 1] Cycloaddition

Min Zhang and Weiping Tang*

School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
wtang@pharmacy.wisc.edu

Received June 12, 2012

ABSTRACT

The cyclohexenone core of welwitindolinones was synthesized by a Rh(I)-catalyzed [5 + 1]-cycloaddition of an allenylcyclopropane with CO. A pentasubstituted cyclopropane was prepared successfully by a Rh(II)-catalyzed intramolecular cyclopropanation of alkenes with chlorodiazooacetates.

Indole alkaloid welwitindolinones (e.g., 1–3, Scheme 1) and related natural products were isolated from blue-green algae *Hapalosiphon welwitschii* and westiella intricate.1 N-Methylwelwitindolinone C isothiocyanate 1 reversed the drug resistance of cancer cells in the presence of various anticancer drugs, including actinomycin D, colchicine, daunomycin, taxol, and vinblastine.2 Because of the challenging structures and their interesting biological activity, numerous synthetic efforts have been devoted to the synthesis of welwitindolinone C’s3 and related natural products, such as welwitindolinone A.4 Recently, research groups of Rawal5 and Garg6 independently accomplished elegant syntheses of welwitindolinone C’s and their oxidized congeners.

In most previous strategies for welwitindolinone C’s, functional groups on the six-membered ring especially the vinyl chloride group were introduced or proposed to be introduced at a late stage, which was often challenging.7 We envisioned that a Rh-catalyzed [5 + 1] cycloaddition of allenylcyclopropane 5 with CO might afford the fully functionalized cyclohexenone core 4 efficiently. Alternatively, [5 + 1] cycloaddition of allenylcyclopropane 8 may yield cyclohexenone 7. Closing of the seven-membered ring may be realized by addition to the isopropylidene group in intermediate 4 through strategy a or α-arylation of the ketone group in intermediate 6 through strategy b.

We recently developed a stereoselective method for the synthesis of highly functionalized cyclohexenones via Rh-catalyzed [5 + 1] cycloaddition of allenylocyclopropanes derived from 1,3-acyloxy migration of propargyl esters. We examined the regioselectivity for the cleavage of the cyclopropane ring and found that the C–C bond adjacent to an electron-rich aryl group or away from a quaternary carbon was selectively cleaved. This provided the basis for the proposed regioselective [5 + 1] cycloaddition of cyclopropane 5 or 8.

The synthesis began with the preparation of allylic alcohol 11 from commercially available 4-cyanoindole 9 through a sequence of methylation, reduction, olefination, and reduction (Scheme 2). Esterification and diazo compound formation were achieved in one step using reagent. Chlorination of diazo compound 13 yielded an unstable halodiazoacetate that was directly used in the cyclopropanation reaction. Based on a previous report, Du Bois’ Rh2-(esp)2 was an efficient catalyst for mediating intermolecular cyclopropanation of alkenes and halodiazoacetates. We also found that Rh2(OAc)4 was superior to other rhodium catalysts such as Rh2(esp)2 for this intramolecular cyclopropanation. The best isolated yield we obtained for product 15, however, was only about 20%. We suspected that the electron-rich indole ring might interfere with the electrophilic cyclopropanation. Substrates with an electron-withdrawing group on the indole nitrogen were then examined.

Scheme 1. Proposed Strategies for Welwitindolinones

Scheme 2. Intramolecular Cyclopropanation of an Alkene Substituted with a N-Methyl Indole

Boc-protected indole 16 was prepared in two steps from 4-cyanoindole indole 9 (Scheme 3). Diazooacetate 17 could be synthesized according to protocols described in Scheme 2. Chlorination followed by intramolecular cyclopropanation using the Rh$_2$(esp)$_2$ catalyst afforded bicyclic product 19 in 50–60% yield after two steps starting with 1.2–4.4 g of diazo compound 17. This represents the first successful example of intramolecular cyclopropanation of alkenes with chlorodiazooacetates, and the reaction could be scaled up to several grams.

Opening of the lactone and protection of the resulting primary alcohol afforded Weinreb amide 14 scaled up to several grams. Addition of propynyl magnesium bromide to this amide then yielded ynone 20, which was reduced to a mixture of two diastereomeric propargyl alcohols. Attempts to prepare allene 22 through an S_2' reaction led to either decomposition when the leaving group was a mesylate/triflate or no reaction when the leaving was acetate. Eventually, displacement of a sulfoxide leaving group proved to be fruitful and provided the desired allene 22 in 80% yield from ynone 21.

With allenylocyclopropane 22 in hand, we then tried the [5 + 1] cycloaddition under different conditions. After screening various solvents (toluene, xylene, DCE, CHCl$_3$, dioxane), catalysts ([Rh(CO)$_2$Cl]$_2$, [Rh(COD)$_2$Cl]$_2$, [RhCl$(PPh_3)_3$], Ir(CO)$_2$Cl)$_2$), CO pressure (1 atm, 2 atm, and 5 atm), and temperature, we were able to isolate a 60% yield of the desired [5 + 1] cycloaddition product 23 under conditions shown in Scheme 5. The cyclopropane C–C bond adjacent to the indole ring and away from the quaternary carbon was selectively cleaved during the cycloaddition. The relative stereochemistry of the product and the regioselectivity for cleavage of the cyclopropane C–C σ-bond were determined by NOE and HMBC, respectively.

![Scheme 3. Intramolecular Cyclopropanation of an Alkene Substituted with a N-Boc Protected Indole](image1)

![Scheme 4. Preparation of Pentasubstituted Allenylcyclopropane](image2)

![Scheme 5. Rh-Catalyzed [5 + 1] Cycloaddition of Allenylcyclopropane and CO](image3)

(10) For a comprehensive review on transition metal mediated reactions involving cyclopropanes, see: Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.

(17) See Supporting Information for details.
In summary, we have developed an efficient strategy to access the cyclohexenone core of welwitindolinone C’s. Highly sterically congested pentasubstituted cyclopropanes were prepared successfully by an intramolecular cyclopropanation of trisubstituted alkenes with chlorodiazooacetates. The [5 + 1] cycloaddition product 23 has a cyclohexenone core with most of the required functionalities for welwitindolinone C’s including a quaternary carbon, a vinylicloride group, an indole ring, and a ketone group with an isopropylidene substituent. Efforts to complete the synthesis of welwitindolinone C’s and their analogues by installing the second quaternary carbon and closing the seven-membered ring are currently underway in our laboratory, in addition to the study of [5 + 1] cycloaddition of other allenylcyclopropanes.

Acknowledgment. We thank the University of Wisconsin and the NIH (R01 GM088285) for financial support and a Young Investigator Award (to W.T.) from Amgen.

Supporting Information Available. 1H NMR, 13C NMR, IR, HRMS for starting materials and products. This material is available free of charge via the Internet at http://pubs.acs.org.

(18) Initial attempts to close the seven-membered ring by Lewis acid mediated direct cyclization of intermediate 23 were not successful.

The authors declare no competing financial interest.